Skip to main content

Advertisement

Log in

Red/Black Phosphorus Z-Scheme Heterogeneous Junction Modulated by Co-MOF for Enhanced Photocatalytic Hydrogen Evolution

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A novel composite photocatalyst RP/BP/Co-MOF was prepared for highly efficient photocatalytic hydrogen evolution. Metal–organic frameworks Co-MOF was used as an electron transfer medium in composite photocatalyst, it accelerated the electron transfer rate between red phosphorus and black phosphorus. It had played an important role in RP/BP Z-scheme heterojunction system. Under simulated visible light exposure, the hydrogen production amount of the composite photocatalyst RP/BP/Co-MOF was 632.4 μmol in 5 h, which was 44.82 times as much as RP/BP flake. At the same time, a series of characterization of the composite photocatalyst was carried out. The results of photoluminescent spectroscopy and electrochemical measurements showed that the combination of RP/BP Z-scheme heterojunction and 2D sheet Co-MOF could effectively inhibit the recombination of photogenerated carriers, promote the transfer of electrons and improve the photocatalytic activity of the composite photocatalyst. This work provided an important way to develop a low-cost photocatalyst with high hydrogen yield.

Graphic Abstract

Red/Black phosphorus Z-Scheme heterogeneous junction modulated by Co-MOF for enhanced photocatalytic hydrogen evolution. The enlarged part shows the structure structure of Co-MOF. C: black; N: light blue; Co: purple. Hydrogen atoms are omitted for clarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Jeff T (2018) Can the world kick its fossil-fuel addiction fast enough? Nature 556(7702):422–425

    Article  CAS  Google Scholar 

  2. Ayub I, Munir A, Amjad W et al (2018) Energy and exergy-based thermal analyses of a solar bakery unit. J Therm Anal Calorim 133:1001–1013

    Article  CAS  Google Scholar 

  3. Gude VG, Nirmalakhandan N (2010) Sustainable desalination using solar energy. Energy Convers Manag 51:2245–2251

    Article  CAS  Google Scholar 

  4. Qiu B, Li C, Shen X, Wang W, Ren H, Li Y, Tang J (2020) Revealing the size effect of metallic CoS2 on CdS nanorods for photocatalytic hydrogen evolution based on Schottky junction. Appl Catal A 592:117377

    Article  CAS  Google Scholar 

  5. Hu X, Lu S, Tian J, Wei N, Song X, Wang X, Cui H (2019) The selective deposition of MoS2 nanosheets onto (101) facets of TiO2 nanosheets with exposed (001) facets and their enhanced photocatalytic H2 production. Appl Catal B 241:329–337

    Article  CAS  Google Scholar 

  6. Wang C, Cai X, Chen Y et al (2017) Improved hydrogen production from glycerol photoreforming over solgel derived TiO2, coupled with metal oxides. Chem Eng J 317:522–532

    Article  CAS  Google Scholar 

  7. An C, Feng J, Liu J, Wei G, Du J et al (2017) NiS nanoparticle decorated MoS2 nanosheets as efficient promoters for enhanced solar H2 evolution over ZnxCd1-xS nanorods. Inorg Chem Front 4:1042–1047

    Article  CAS  Google Scholar 

  8. Tang Y, Zhang D, Qiu X et al (2019) Fabrication of a NiCo2O4/Zn0.1Cd0.9S p-n heterojunction photocatalyst with improved separation of charge carriers for highly efficient visible light photocatalytic H2 evolution. J Alloys Compd 809:151855

    Article  CAS  Google Scholar 

  9. Madhusudan P, Wang Y, Chandrashekar BN et al (2019) Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution. Appl Catal B 253:379–390

    Article  CAS  Google Scholar 

  10. Du S, Lin X, Li C, Li G, Zheng B, Liu Y, Xu H, Fang P (2020) CoSe2 modified Se-decorated CdS nanowire Schottky heterojunctions for highly efficient photocatalytic hydrogen evolution. Chem Eng J 389:124431

    Article  CAS  Google Scholar 

  11. Jin Z, Zhang L (2020) Performance of Ni-Cu bimetallic co-catalyst g-C3N4 nanosheets for improving hydrogen evolution. J Mater Sci Technol 49:144–156

    Article  Google Scholar 

  12. Zhang L, Hao X, Wang Y, Jin Z, Ma Q (2020) Construction strategy of Mo-S@Mo-P heterojunction formed with in-situ phosphating Mo-S nanospheres toward efficient photocatalytic hydrogen production. Chem Eng J 391:123545

    Article  CAS  Google Scholar 

  13. Zheng Y, Chen Y, Gao B, Chen J, Du Z, Lin B (2019) Polymeric carbon nitride hybridized by CuInS2 quantum dots for photocatalytic hydrogen evolution. Mater Lett 254:81–84

    Article  CAS  Google Scholar 

  14. Yuan X, Shen D, Zhang Q, Yang G, Zhang B, Li Y, Zuo J, Peng F (2020) Highly exposed (001) facets Ni(OH)2 induced formation of nickle phosphide over cadmium sulfide nanorods for efficient photocatalytic hydrogen evolution. Int J Hydrog Energy 45(16):9397–9407

    Article  CAS  Google Scholar 

  15. Liu E, Du Y, Bai X, Fan J, Hu X (2020) Synergistic improvement of Cr(VI) reduction and RhB degradation using RP/g-C3N4 photocatalyst under visible light irradiation. Arab J Chem 13(2):3836–3848

    Article  CAS  Google Scholar 

  16. Yuan Y, Cao S, Liao Y, Yin L, Xue C (2013) Red phosphor/g-C3N4 heterojunction with enhanced photocatalytic activities for solar fuels production. Appl Catal B 140–141:164–168

    Article  CAS  Google Scholar 

  17. Zhao H, Sun S, Wu Y, Jiang P, Dong Y, Xu Z (2017) Ternary graphitic carbon nitride/red phosphorus/molybdenum disulfide heterostructure: an efficient and low cost photocatalyst for visible-light-driven H2 evolution from water. Carbon 119:56–61

    Article  CAS  Google Scholar 

  18. Wang F, Wilson N, Yu J, Zhu H, Li C, Zhang L, Liu Z, Li Q (2012) Red phosphorus: an elemental photocatalyst for hydrogen formation from water. Appl Catal B 111–112:409–414

    Article  CAS  Google Scholar 

  19. Liang Z, Dong X, Han Y, Geng J (2019) In-situ growth of 0D/2D Ni2P quantum dots/red phosphorus nanosheets with p-n heterojunction for efficient photocatalytic H2 evolution under visible light. Appl Surf Sci 484:293–299

    Article  CAS  Google Scholar 

  20. Yuan Y, Wang P, Li Z, Wu Y, Bai W et al (2019) The role of bandgap and interface in enhancing photocatalytic H2 generation activity of 2D-2D black phosphorus/MoS2 photocatalyst. Appl Catal B 242:1–8

    Article  CAS  Google Scholar 

  21. Liu F, Shi R, Wang Z et al (2019) Direct Z-scheme heterophase junction of black/red phosphorus for photocatalytic water splitting. Angew Chem 131(34):11917–11921

    Article  Google Scholar 

  22. Zhang Y, Jin Z, Yuan H, Wang G, Ma B (2018) Well-regulated nickel nanoparticles functional modified ZIF-67(Co) derived Co3O4/CdS p-n heterojunction for efficient photocatalytic hydrogen evolution. Appl Surf Sci 462:213–225

    Article  CAS  Google Scholar 

  23. Cheng W, Zhao X, Su H et al (2019) Lattice-strained metal–organic-framework arrays for bifunctional oxygen electrocatalysis. Nat Energy 4:115–122

    Article  CAS  Google Scholar 

  24. Wang Z, Jin Z, Yang H, Ma X, Liu H (2019) Synergistic interface phenomena between MOFs, NiPx for efficient hydrogen production. Mol Catal 467:78–86

    Article  CAS  Google Scholar 

  25. Wang Y, Du Q, Zhao H, Hou S, Shen Y et al (2018) Metal–organic framework derived leaf-like CoSNC nanocomposites for supercapacitor electrodes. Nanoscale 10(37):17958–17964

    Article  CAS  PubMed  Google Scholar 

  26. Guan J, Hu Y, Wang Y et al (2017) Controlled encapsulation of functional organic molecules within metal–organic frameworks: in situ crystalline structure transformation. Adv Mater 29(12):1606290. https://doi.org/10.1002/adma.201606290

    Article  CAS  Google Scholar 

  27. Li W, Yue J, Hua F, Feng C, Bu Y, Chen Z (2015) Enhanced visible light photocatalytic property of red phosphorus via surface roughening. Mater Res Bull 70:13–19

    Article  CAS  Google Scholar 

  28. Zhang J, Zhang T, Yu D, Xiao K, Hong Y (2015) Transition from ZIF-L-Co to ZIF-67: a new insight into structural evolution of zeolitic imidazolate framworks (ZIFs) in aqueous system. CrystEngComm 17(43):8212–8215

    Article  CAS  Google Scholar 

  29. Cao Y, Wang G, Ma Q, Jin Z (2020) Amorphous NiCoB nanoalloy modified Mn0.05Cd0.95S for photocatalytic hydrogen evolution. Mol Catal 492:111001

    Article  CAS  Google Scholar 

  30. Fu J, Xu Q, Low J, Jiang C, Yu J (2019) Ultrathin 2D/2D WO3/g-C3N4 step-scheme H2-production photocatalyst. Appl Catal B 243:556–565

    Article  CAS  Google Scholar 

  31. Nie N, Zhang L, Fu J, Cheng B, Yu J (2018) Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance. Appl Surf Sci 441:12–22

    Article  CAS  Google Scholar 

  32. Zhou J, Lin N, Cai W, Guo C, Zhang K, Zhou J, Zhu Y, Qian Y (2016) Synthesis of S/CoS2 nanoparticles-embedded N-doped carbon polyhedrons from polyhedrons ZIF-67 and their properties in lithium-sulfur batteries. Electrochim Acta 218:243–251

    Article  CAS  Google Scholar 

  33. Li Y, Jin Z, Zhao T (2020) Performance of ZIF-6–derived fold polyhedrons for enhanced photocatalytic hydrogen evolution. Chem Eng J 382:123051

    Article  CAS  Google Scholar 

  34. Qian J, Sun F, Qin L (2012) Hydrothermal synthesis of zeolitic imidazolate framework-67 (ZIF-67) nanocrystals. Mater Lett 82:220–223

    Article  CAS  Google Scholar 

  35. Zhao S, Xu J, Yu H et al (2019) RGO boosts band gap regulates for constructing Ni2P/RGO/MoO2 Z-scheme heterojunction to achieve high efficiency photocatalytic H2 evolution. Catal Lett 149:48

    Article  Google Scholar 

  36. Kim J, Kim D, Kim D et al (2013) Synthesis of MOF having hydroxyl functional side groups and optimization of activation process for the maximization of its BET surface area. J Solid State Chem 197:261–265

    Article  CAS  Google Scholar 

  37. Li H, Ma H, Wang X et al (2014) Efficient oxidation of ethylbenzene catalyzed by cobalt zeolitic imidazolate framework ZIF-67 and NHPI. J Energy Chem 23(6):742–746

    Article  Google Scholar 

  38. Lourenco J, Ribeiro M, Ribeiro F et al (1997) Generation of acid sites by incorporation of cobalt in the AFR structure. Stud Surf Sci Catal 105(97):1973–1980

    Article  Google Scholar 

  39. Lim S, Ciuparu D, Pak C et al (2003) Synthesis and characterization of highly ordered CoMCM-41 for production of aligned single walled carbon nanotubes. J Phys Chem B 107(40):11048–11056

    Article  CAS  Google Scholar 

  40. Zhao S, Xu J, Li Z, Liu Z, Li Y (2019) Molybdenum disulfide coated nickel-cobalt sulfide with nickel phosphide loading to build hollow core-shell structure for highly efficient photocatalytic hydrogen evolution. J Colloid Interface Sci 555:689–701

    Article  CAS  PubMed  Google Scholar 

  41. Gong H, Zhang X, Wang G, Liu Y, Li Y, Jin Z (2020) Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Mol Catal 485:110832

    Article  CAS  Google Scholar 

  42. Xu H, Li X, Kang S, Qin L, Li G, Mu J (2014) Noble metal-free cuprous oxide/reduced graphene oxide for enhanced photocatalytic hydrogen evolution from water reduction. Hydrog Energy 39:11578–11582

    Article  CAS  Google Scholar 

  43. Guo F, Shi W, Wang H, Han MY et al (2017) Facile fabrication of a CoO/g-C3N4 p-n heterojunction with enhanced photocatalytic activity and stability for tetracycline degradation under visible light. Catal Sci Technol 7:3325–3331

    Article  CAS  Google Scholar 

  44. Jo W, Clament N (2017) Z-scheme CdS/g-C3N4 composites with RGO as an electron mediator for efficient photocatalytic H2 production and pollutant degradation. Chem Eng J 317:913–924

    Article  CAS  Google Scholar 

  45. Xue W, Hu X, Liu E, Fan J (2018) Novel reduced graphene oxide-supported Cd0.5Zn0.5S/g-C3N4 Z-scheme heterojunction photocatalyst for enhanced hydrogen evolution. Appl Surf Sci 447:783–794

    Article  CAS  Google Scholar 

  46. Li J, Zhang M, Li Q, Yang J (2017) Enhanced visible light activity on direct contact Z-scheme g-C3N4-TiO2 photocatalyst. Appl Surf Sci 391:184–193

    Article  CAS  Google Scholar 

  47. Wang Y, Hao X, Zhang L, Li Y, Jin Z (2020) Rational design of all-solid-state 0D/2D Mn0.2Cd0.8S/CeO2 direct Z-scheme for photocatalytic hydrogen evolution. Energy Fuels 34:2599–2611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work were supported by Natural Science Foundation of Ningxia Province of Ningxia Project (NZ17262), Foundation of Key Laboratory of Electrochemical Energy Conversion Technology and Application at North Minzu University (2018KLEA02), Open Project of State Key Laboratory of high-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University (2019-KF-36), and New Catalytic Process in Clean Energy Production (ZDZX201803).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1215 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Xu, J., Zhao, S. et al. Red/Black Phosphorus Z-Scheme Heterogeneous Junction Modulated by Co-MOF for Enhanced Photocatalytic Hydrogen Evolution. Catal Lett 151, 2658–2672 (2021). https://doi.org/10.1007/s10562-020-03507-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03507-2

Keywords

Navigation