Skip to main content
Log in

Promotion of the Asymmetric Reduction of Prochiral Ketone with Recombinant E. coli Through Strengthening Intracellular NADPH Supply by Modifying EMP and Introducing NAD Kinase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The intracellular NADPH insufficient supply is the main bottleneck to the synthesis of chiral alcohols by asymmetric reduction with whole-cell catalysis. Herein, we provide a novel strategy to strengthen intracellular NADPH supply through introducing an NADP+-dependent glyceraldehyde 3-phosphate dehydrogenase (gapB from Bacillus subtilis 168) into the Embden-Meyerhof pathway and a NAD kinase (yfjB from E. coli MG1655) to further enhance the NADP(H) pool. A recombinant E. coli (E. coli BL21 (DE3)/pETDuet-1-gapB-yueD&pET28a-yfjB) was constructed to co-express gapB and yfjB with a carbonyl reductase gene yueD together. The result showed that the intracellular NADPH amount increased by 134.4% with the strategy. To the model reaction (asymmetric reduction of acetophenone to S-phenyl ethanol), the yield was 3.7-fold with this strategy compared to the control. This provides a technological route for strengthening the intracellular NADPH supply in E. coli for biocatalysis and biosynthesis.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen K, Li K, Deng J, Zhang B, Lin J, Wei D (2016) Microb Cell Fact 15(1):191

    Article  Google Scholar 

  2. Dwivedee BP, Bhaumik J, Rai SK, Laha JK, Banerjee UC (2017) Bioresour Technol 239:464–471

    Article  CAS  Google Scholar 

  3. Wang YJ, Shen W, Luo X, Liu ZQ, Zheng YG (2017) Biotechnol Prog 33(5):1235–1242

    Article  Google Scholar 

  4. Yu S, Li H, Lu Y, Zheng G (2018) Appl Biochem Biotechnol 184(4):1319–1331

    Article  CAS  Google Scholar 

  5. Zhang ZJ, Pan J, Ma BD, Xu JH (2016) Adv Biochem Eng Biotechnol 155:55–106

    CAS  PubMed  Google Scholar 

  6. Qiu S, Cheng F, Jin L-J, Chen Y, Li S-F, Wang Y-J, Zheng Y-G (2020) Bioorg Chem 103:104228

    Article  CAS  Google Scholar 

  7. Yu H, Qiu S, Cheng F, Cheng Y-N, Wang Y-J, Zheng Y-G (2019) Bioorg Chem 90:103018

    Article  CAS  Google Scholar 

  8. Torrelo G, Hanefeld U, Hollmann F (2015) Catal Lett 145(1):309–345

    Article  CAS  Google Scholar 

  9. Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT (2020) Angewandte Chemie International Edition First published

  10. Mayr JC, Grosch JH, Hartmann L, Rosa LFM, Spiess AC, Harnisch F (2019) Chemsuschem 12(8):1631–1634

    Article  CAS  Google Scholar 

  11. Wang M, Chen BQ, Fang YM, Tan TW (2017) Biotechnol Adv 35(8):1032–1039

    Article  CAS  Google Scholar 

  12. Han L, Liang B (2018) World J Microbiol Biotechnol 34(10):8

    Article  Google Scholar 

  13. Jiang R, Chen X, Lian J, Huang L, Cai J, Xu Z (2019) J Appl Microbiol 126(6):1751–1760

    Article  CAS  Google Scholar 

  14. Spaans SK, Weusthuis RA, van der Oost J, Kengen SW (2015) Front Microbiol 6:742

    Article  Google Scholar 

  15. Liu ZQ, Dong SC, Yin HH, Xue YP, Tang XL, Zhang XJ, He JY, Zheng YG (2017) Bioresour Technol 229:26–32

    Article  CAS  Google Scholar 

  16. Geng Y, Zhang R, Xu Y, Wang S, Sha C, Xiao R (2011) Biocatal Biotransform 29(5):172–178

    Article  CAS  Google Scholar 

  17. Basak S, Sahoo NG, Pavanasam AK (2018) Bioengineered 9(1):186–195

    Article  CAS  Google Scholar 

  18. Rho HS, Choi K (2018) J Microbiol Biotechnol 28(8):1346–1351

    Article  CAS  Google Scholar 

  19. Xu GC, Zhu C, Li AT, Ni Y, Han RZ, Zhou JY, Ni Y (2019) ACS Sustain Chem Eng 7(18):15706–15714

    Article  CAS  Google Scholar 

  20. Wang Y-J, Ying B-B, Shen W, Zheng R-C, Zheng Y-G (2017) Enzyme Microbial Technol 107:32–40

    Article  CAS  Google Scholar 

  21. Mordhorst S, Andexer JN (2020) Natural Product Reports 37(10):1316–1333

    Article  CAS  Google Scholar 

  22. Cui YY, Ling C, Zhang YY, Huang J, Liu JZ (2014) Microb Cell Fact 13:11

    Article  Google Scholar 

  23. King ZA, Feist AM (2014) Metab Eng 24:117–128

    Article  CAS  Google Scholar 

  24. Fang HT, Xie XX, Xu QY, Zhang CL, Chen N (2013) Biotechnol Lett 35(2):245–251

    Article  CAS  Google Scholar 

  25. Rui B, Yi Y, Shen T, Zheng M, Zhou W, Du H, Fan Y, Wang Y, Zhang Z, Xu S, Liu Z, Wen H, Xie X (2015) PLoS ONE 10(6):e0129837

    Article  Google Scholar 

  26. Zhu S, Cai DB, Liu ZW, Zhang BW, Li JH, Chen SW, Ma X (2019) Appl Biochem Biotechnol 187(4):1502–1514

    Article  CAS  Google Scholar 

  27. Luo W, Deng X-X, Gong Z-W, Yang Z-H (2016) Asia-Pac J Chem Eng 11(4):533–538

    Article  CAS  Google Scholar 

  28. Luo W, Deng X-X, Huo J, Ruan T, Gong Z-W, Yan J-B, Yang Z-H, Quan C, Cui Z-F (2018) Catal Lett 148(6):1714–1722

    Article  CAS  Google Scholar 

  29. Arutyunov D, Schmalhausen E, Orlov V, Rahuel-Clermont S, Nagradova N, Branlant G, Muronetz V (2013) Biochem Cell Biol 91(5):295–302

    Article  CAS  Google Scholar 

  30. Centeno-Leija S, Utrilla J, Flores N, Rodriguez A, Gosset G, Martinez A (2013) Antonie Van Leeuwenhoek 104(6):913–924

    Article  CAS  Google Scholar 

  31. Martinez I, Zhu J, Lin H, Bennett GN, San KY (2008) Metab Eng 10(6):352–359

    Article  CAS  Google Scholar 

  32. Bommareddy RR, Chen Z, Rappert S, Zeng AP (2014) Metab Eng 25:30–37

    Article  CAS  Google Scholar 

  33. Wang Y, San KY, Bennett GN (2013) J Ind Microbiol Biotechnol 40(12):1449–1460

    Article  CAS  Google Scholar 

  34. Zhang J, Gao X, Hong PH, Li ZJ, Tan TW (2015) Biotechnol Lett 37(6):1273–1278

    Article  CAS  Google Scholar 

  35. Zhang S, Fang L, Li ZJ, Guo Y, Chen G-Q (2016) Sci China Chem 59(11):1390–1396

    Article  CAS  Google Scholar 

  36. Luo W, Du H-J, Bonku EM, Hou Y-L, Li L-L, Wang X-Q, Yang Z-H (2019) Catal Lett 149(11):2973–2983

    Article  CAS  Google Scholar 

  37. Qin Y-L, Ruan T, Hou H-S, Hou Y-L, Yang Z-H, Quan C (2019) Catal Lett 149(2):610–618

    Article  CAS  Google Scholar 

  38. Kawai S, Mori S, Mukai T, Hashimoto W, Murata K (2001) Eur J Biochem 268(15):4359–4365

    Article  CAS  Google Scholar 

  39. Hong P-H, Zhang J, Liu X-J, Tan T-W, Li Z-J (2016) J Biosci Bioeng 122(6):685–688

    Article  CAS  Google Scholar 

  40. Chen X, Liu Z-Q, Lin C-P, Zheng Y-G (2016) BMC Biotechnol 16(1):70

    Article  Google Scholar 

  41. Naeem M, Rehman AU, Shen B, Ye L, Yu H (2018) Biochem Eng J 137:62–70

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51608400) and the Educational Commission of Hubei Province of China (Grant No. D20121108).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong-Hua Yang, Rong Zeng or Li Luo.

Ethics declarations

Conflict of interest

The authors declare that they has no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, HJ., Luo, W., Appiah, B. et al. Promotion of the Asymmetric Reduction of Prochiral Ketone with Recombinant E. coli Through Strengthening Intracellular NADPH Supply by Modifying EMP and Introducing NAD Kinase. Catal Lett 151, 2527–2536 (2021). https://doi.org/10.1007/s10562-020-03490-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03490-8

Keywords

Navigation