Skip to main content
Log in

Nano-Ni-MOFs: High Active Catalysts on the Cascade Hydrogenation of Quinolines

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The reduction of nitrogen-containing heterocyclic compounds in aqueous medium under mild condition is quite challenging. In view of metal–organic frameworks (MOFs) possess adjustable pore size and modifiable organic linkers, MOFs could be used in heterogeneous catalysis. Herein, Three Nano-Ni-MOFs, MOF-74-Ni, MOF-69-Ni, and Ni–NH2 (constructed from similar ligands and Ni2+ ions) are introduced for hydrogenating of azacyclo-compounds. As expected, Ni–NH2 shows outstanding activity of hydrogenation of quinoline under mild conditions, due to the moderate pore size and the modified –NH2 function group, which makes the substrate anchored on the surface of the framework facilitate the following catalysis process. Theoretical calculations identified that the –NH2 group at the catalyst facilitates the H2 heterolytic dissociation for the hydrogenation reactions.

Graphic Abstract

Compared to MOF-74-Ni and MOF-69-Ni, the catalyst of Ni–NH2 shows outstanding activity of hydrogenation of quinoline, due to the modified –NH2 function group which makes the substrate anchored on the surface of the framework facilitate the following catalysis process

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bullock RM (2013) Abundant Metals Give Precious Hydrogenation Performance. Science 342:1054–1055

    Article  CAS  PubMed  Google Scholar 

  2. Etayo P, Vidal-Ferran A (2013) Rhodium-catalysed asymmetric hydrogenation as a valuable synthetic tool for the preparation of chiral drugs. Chem Soc Rev 42:728–754

    Article  CAS  PubMed  Google Scholar 

  3. Chirik PJ (2015) Iron- and Cobalt-Catalyzed Alkene Hydrogenation: Catalysis with Both Redox-Active and Strong Field Ligands. Acc Chem Res 48:1687–1695

    Article  CAS  PubMed  Google Scholar 

  4. Wei Z, Shao F, Wang J (2019) Recent advances in heterogeneous catalytic hydrogenation and dehydrogenation of N-heterocycles. Chin J Catal 40:980–1002

    Article  CAS  Google Scholar 

  5. Ye S, Wu J (2019) Organic reactions in which 4-substituted Hans esters (Hantzsch Esters) are used as alkylating reagents. Acta Chim Sin 77:814–831

    Article  CAS  Google Scholar 

  6. Wang DS, Chen QA, Lu SM, Zhou YG (2012) Asymmetric Hydrogenation of Heteroarenes and Arenes. Chem Rev 112:2557–2590

    Article  CAS  PubMed  Google Scholar 

  7. Sridharan V, Suryavanshi PA, Menéndez JC (2011) Advances in the Chemistry of Tetrahydroquinolines. Chem Rev 111:7157–7259

    Article  CAS  PubMed  Google Scholar 

  8. Feng X, Song Y, Chen JS, Li Z, Chen EY, Kaufmann M, Wang C, Lin W (2019) Cobalt-bridged secondary building units in a titanium metal–organic framework catalyze cascade reduction of N-heteroarenes. Chem Sci 10:2193–2198

    Article  CAS  PubMed  Google Scholar 

  9. Ge D, Hu L, Wang J, Li X, Qi F, Lu J, Cao X, Gu H (2019) Reversible Hydrogenation-Oxidative Dehydrogenation of Quinolines over a Highly Active Pt Nanowire Catalyst under Mild Conditions. ChemCatChem 5:2183–2186

    Article  CAS  Google Scholar 

  10. Zhang S, Xia Z, Ni T, Zhang Z, Ma Y, Qu Y (2018) Strong electronic metal-support interaction of Pt/CeO2 enables efficient and selective hydrogenation of quinolines at room temperature. J Catal. 359:101–111

    Article  CAS  Google Scholar 

  11. Guo M, Li C, Yang Q (2017) Accelerated catalytic activity of Pd NPs supported on amine-rich silica hollow nanospheres for quinoline hydrogenation. Catal Sci Tech 7:2221–2227

    Article  CAS  Google Scholar 

  12. Xia YT, Ma J, Wang XD, Yang L, Wu L (2017) Enantioselective hydrogenation of N-heteroaromatics catalyzed by chiral diphosphine modified binaphthyl palladium nanoparticles. Catal Sci Tech 7:5515–5520

    Article  CAS  Google Scholar 

  13. Gong YT, Zhang PF, Xu X, Li Y, Li HR, Wang Y (2010) A novel catalyst Pd@ompg-C3N4 for highly chemoselective hydrogenation of quinoline under mild conditions. J Catal 297:272–280

    Article  CAS  Google Scholar 

  14. Huang R, Cao C, Liu J, Zheng L, Zhang Q, Gu L, Jiang L, Song W (2020) Integration of Metal Single Atoms on Hierarchical Porous Nitrogen-Doped Carbon for Highly Efficient Hydrogenation of Large-Sized Molecules in the Pharmaceutical Industry. Acs Appl Mater Inter 12:17651–17658

    Article  CAS  Google Scholar 

  15. Qi L, Chen J, Zhang B, Nie R, Qi Z, Kobayashi T, Bao Z, Yang Q, Ren Q, Sun Q, Zhang Z, Huang W (2020) Deciphering a Reaction Network for the Switchable Production of Tetrahydroquinoline or Quinoline with MOF-Supported Pd Tandem Catalysts. ACS Catal 10:5707–5714

    Article  CAS  Google Scholar 

  16. Zhang L, Wang X, Xue Y, Zeng X, Chen H, Li R, Wang S (2020) Cooperation between the surface hydroxyl groups of Ru-SiO2@mSiO2 and water for good catalytic performance for hydrogenation of quinoline. Catal Sci Tech 4:1939–1948

    Article  Google Scholar 

  17. Zhang X, Kam L, Trerise R, Williams TJ (2017) Ruthenium-Catalyzed Ammonia Borane Dehydrogenation: Mechanism and Utility. Acc Chem Res 50:86–95

    Article  CAS  PubMed  Google Scholar 

  18. Konnerth H, Prechtl MHG (2017) Selective hydrogenation of N-heterocyclic compounds using Ru nanocatalysts in ionic liquids. Green Chem 19:2762–2767

    Article  CAS  Google Scholar 

  19. Sun Q, Wang N, Zhang T, Bai R, Mayoral A, Zhang P, Zhang Q, Terasaki O, Yu J (2019) Zeolite-Encaged Single-Atom Rhodium Catalysts: Highly-Efficient Hydrogen Generation and Shape-Selective Tandem Hydrogenation of Nitroarenes. Angew Chem Int Ed 58:18570–185766

    Article  CAS  Google Scholar 

  20. Wen J, Tan R, Liu S, Zhao Q, Zhang X (2019) Strong Bronsted acid promoted asymmetric hydrogenation of isoquinolines and quinolines catalyzed by a Rh-thiourea chiral phosphine complex via anion binding. Chem Sci 7:3047–3051

    Article  CAS  Google Scholar 

  21. Nasiruzzaman Shaikh M, Aziz MA, Kalanthoden AN, Helal A, Hakeem AS, Bououdina M (2018) Facile hydrogenation of N-heteroarenes by magnetic nanoparticle-supported sub-nanometric Rh catalysts in aqueous medium. Catal Sci Tech 8:4709–4717

    Article  CAS  Google Scholar 

  22. Pang M, Chen JY, Zhang S, Liao RZ, Tung CH, Wang W (2020) Controlled partial transfer hydrogenation of quinolines by cobalt-amido cooperative catalysis. Nat Commun 11:1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Reineke TM, Eddaoudi M, Moler D, O'Keeffe M, Yaghi OM (2000) Large Free Volume in Maximally Interpenetrating Networks: The Role of Secondary Building Units Exemplified by Tb2(ADB)3[(CH3)2SO]4·16[(CH3)2SO]. J Am Chem Soc 122:4843–4844

    Article  CAS  Google Scholar 

  24. Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O'Keeffe M, Yaghi OM (2001) Modular Chemistry: Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks. Acc Chem Res 34:319–330

    Article  CAS  PubMed  Google Scholar 

  25. Liu S, Zhang C, Sun Y, Chen Q, He L, Zhang K, Zhang J, Liu B, Chen LF (2020) Design of metal-organic framework-based photocatalysts for hydrogen generation. Coord Chem Rev 413:213266

    Article  CAS  Google Scholar 

  26. Stavila V, Foster ME, Brown JW, Davis RW, Edgington J, Benin AI, Zarkesh RA, Parthasarathi R, Hoyt DW, Walter ED, Andersen A, Washton NM, Lipton AS, Allendorf MD (2019) IRMOF-74(n)-Mg: a novel catalyst series for hydrogen activation and hydrogenolysis of C-O bonds. Chem Sci 10:9880–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. An B, Li Z, Song Y, Zhang J, Zeng L, Wang C, Lin W (2019) Cooperative copper centres in a metal-organic framework for selective conversion of CO2 to ethanol. Nat Catal 2:709–717

    Article  CAS  Google Scholar 

  28. Zhang Y, Pang J, Li J, Yang X, Feng M, Cai P, Zhou HC (2019) Visible-light harvesting pyrene-based MOFs as efficient ROS generators. Chem Sci 10:8455–8460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou A, Dou Y, Zhou J, Li JR (2020) Rational Localization of Metal Nanoparticles in Yolk-Shell MOFs for Enhancing Catalytic Performance in Selective Hydrogenation of Cinnamaldehyde. Chemsuschem 13:205–211

    Article  CAS  PubMed  Google Scholar 

  30. Guntern YT, Pankhurst JR, Vávra J, Mensi M, Mantella V, Schouwink P, Buonsanti R (2020) Nanocrystal/Metal-Organic Framework Hybrids as Electrocatalytic Platforms for CO2 Conversion. Angew Chem Int Ed 58:12632–12639

    Article  CAS  Google Scholar 

  31. Wang X, Chen W, Zhang L, Yao T, Liu W, Lin Y, Ju H, Dong J, Zheng L, Yan W, Zheng X, Li Z, Wang X, Yang J, He D, Wang Y, Deng Z, Wu Y, Li Y (2017) Uncoordinated Amine Groups of Metal-Organic Frameworks to Anchor Single Ru Sites as Chemoselective Catalysts toward the Hydrogenation of Quinoline. J Am Chem Soc 139:9419–9422

    Article  CAS  PubMed  Google Scholar 

  32. Liu D, Wan J, Pang G, Tang Z (2019) Hollow Metal-Organic-Framework Micro/Nanostructures and their Derivatives: Emerging Multifunctional Materials. Adv Mater 31:1803291

    Article  CAS  Google Scholar 

  33. Ji P, Feng X, Veroneau SS, Song Y, Lin W (2017) Trivalent Zirconium and Hafnium Metal-Organic Frameworks for Catalytic 1,4-Dearomative Additions of Pyridines and Quinolines. J Am Chem Soc 139:15600–15603

    Article  CAS  PubMed  Google Scholar 

  34. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21:395502

    Article  PubMed  Google Scholar 

  35. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  CAS  PubMed  Google Scholar 

  36. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41:7892.

    Article  CAS  Google Scholar 

  37. Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J Chem Phys 132:154104

    Article  PubMed  CAS  Google Scholar 

  38. Yun R, Ma W, Wang S, Jia W, Zheng B (2019) High Selectivity of Hydrogenation Reaction over Co0.15@C/PC Catalyst at Room Temperature. Inorg Chem 58:6137-6142

    Article  CAS  PubMed  Google Scholar 

  39. Yun R, Hong L, Ma W, Jia W, Liu S, Zheng B (2019) Fe/Fe2O3@N-dopped Porous Carbon: A High-Performance Catalyst for Selective Hydrogenation of Nitro Compounds. ChemCatChem 11:724–728

    Article  CAS  Google Scholar 

  40. Yun R, Zhang S, Ma W, Lv X, Liu S, Sheng T, Wang S (2019) Fe/Fe3C Encapsulated in N-Doped Carbon Tubes: A Recyclable Catalyst for Hydrogenation with High Selectivity. Inorg Chem 58:9469–9475

    Article  CAS  PubMed  Google Scholar 

  41. Yun R, Ma W, Hong L, Hu Y, Zhan F, Liu S, Zheng B (2019) Ni@PC as a stabilized catalyst toward the efficient hydrogenation of quinoline at ambient temperature. Catal Sci Tech 9:6669–6672

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Our work was funded by the National Natural Science Foundation of China (Nos. 21401004, 21903001), the Natural Science Foundation of Anhui Province (Nos. 190808085QB58, 2008085MB52), and National Creative Plan of Students (No. 201810370443), the Open Foundation of Anhui Laboratory of Molecule-based Materials (No. fzj19005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruirui Yun, Baishu Zheng or Tian Sheng.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 815 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yun, R., Ma, ZW., Hu, Y. et al. Nano-Ni-MOFs: High Active Catalysts on the Cascade Hydrogenation of Quinolines. Catal Lett 151, 2445–2451 (2021). https://doi.org/10.1007/s10562-020-03491-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03491-7

Keywords

Navigation