Skip to main content
Log in

A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing

  • Review
  • Published:
Carbon Letters Aims and scope Submit manuscript

Abstract

Aluminium metal matrix composites (AMMCs) are the fastest developing materials for structural applications due to their high specific weight, modulus, resistance to corrosion and wear, and high temperature strength. Carbon nanotubes (CNTs) is known as the material of the twenty-first century for its various applications in structural components for their high specific strength as well as functional materials for their exciting thermal and electrical characteristics. The present study comprise a systematic literature review of Al/CNT nanocomposites fabricated through a solid state friction stir processing. The present review is primarily focussed on the dispersion and survivability of CNTs in the Al matrix because these are the key factors in deciding the mechanical properties of the fabricated composite. Additionally, the formability, weldability and machinability of the FSPed fabricated composites reinforced with CNTs are also summarised here. Based on the detailed literature review, following research gaps are identified which require a critical and more focussed attention of the scientific community working in this research area: (i) the presence of agglomeration or clustering of CNTs in the composite, (ii) survivability and shortening of CNTs during FSP, (iii) interfacial reactions or the formation of reaction products (such as Al4C3) between Al matrix and CNTs, and (iv) the unidirectional alignment of CNTs in the fabricated composite. Important suggestions for further research in effective dispersion of CNTs with its preserved structure by FSP are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35

Similar content being viewed by others

References

  1. Bakshi SR, Agarwal A (2011) An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites. Carbon 49:533–544

    Article  CAS  Google Scholar 

  2. Gandra J, Krohn H, Miranda RM, Vilaça P, Quintino L, Dos Santos JF (2014) Friction surfacing—a review. J Mater Process Technol 214:1062–1093

    Article  Google Scholar 

  3. Rohatgi PK, Ray S, Liu Y (1992) Tribological properties of metal matrix-graphite particle composites. Int Mater Rev 37:129–152

    Article  CAS  Google Scholar 

  4. Singla D, Amulya K, Murtaza Q (2015) CNT reinforced aluminium matrix composite—a review. Mater Today Proc 2:2886–2895

    Article  Google Scholar 

  5. A. Turnbull (1992) Review of corrosion studies on aluminium metal matrix composites, 27

  6. Dieringa H (2011) Properties of magnesium alloys reinforced with nanoparticles and carbon nanotubes: a review. J Mater Sci 46:289–306

    Article  CAS  Google Scholar 

  7. Chi Y, Gu G, Yu H, Chen C (2018) Laser surface alloying on aluminum and its alloys: a review. Opt Lasers Eng 100:23–37

    Article  Google Scholar 

  8. Joost WJ (2012) Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. Jom 64:1032–1038

    Article  Google Scholar 

  9. Zhang M, Liu Y, Yang X, An J, Luo K (2008) Effect of graphite particle size on wear property of graphite and Al2O3 reinforced AZ91D-0.8%Ce composites. Trans Nonferrous Met Soc China 18:s273–s277

    Article  CAS  Google Scholar 

  10. Tabandeh-Khorshid M, Ferguson JB, Schultz BF, Kim CS, Cho K, Rohatgi PK (2016) Strengthening mechanisms of graphene- and Al2O3-reinforced aluminum nanocomposites synthesized by room temperature milling. Mater Des 92:79–87

    Article  CAS  Google Scholar 

  11. Suvarna Raju L, Kumar A (2014) Influence of Al2O3 particles on the microstructure and mechanical properties of copper surface composites fabricated by friction stir processing. Def Technol 10:375–383

    Article  Google Scholar 

  12. Aruri D, Adepu K, Adepu K, Bazavada K (2013) Wear and mechanical properties of 6061–T6 aluminum alloy surface hybrid composites [(SiC+Gr) and (SiC+Al2O3)] fabricated by friction stir processing. J Mater Res Technol 2:362–369

    Article  CAS  Google Scholar 

  13. Raaft M, Mahmoud TS, Zakaria HM, Khalifa TA (2011) Microstructural, mechanical and wear behavior of A390/graphite and A390/Al2O3 surface composites fabricated using FSP. Mater Sci Eng A 528:5741–5746

    Article  CAS  Google Scholar 

  14. D’Amato C, Buhagiar J, Betts JC (2014) Tribological characteristics of an A356 aluminium alloy laser surface alloyed with nickel and Ni–Ti–C. Appl Surf Sci 313:720–729

    Article  Google Scholar 

  15. Shojaeefard MH, Akbari M, Asadi P, Khalkhali A (2017) The effect of reinforcement type on the microstructure, mechanical properties, and wear resistance of A356 matrix composites produced by FSP. Int J Adv Manuf Technol 91:1391–1407

    Article  Google Scholar 

  16. Sharma V, Gupta Y, Kumar BVM, Prakash U (2016) Friction stir processing strategies for uniform distribution of reinforcement in a surface composite. Mater Manuf Process 31:1384–1392

    Article  CAS  Google Scholar 

  17. Nutt SR, Wawner FE (1985) Silicon carbide filaments: microstructure. J Mater Sci 20:1953–1960

    Article  CAS  Google Scholar 

  18. Jiang L, Li Z, Fan G, Cao L, Zhang D (2012) The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50:1993–1998

    Article  CAS  Google Scholar 

  19. Tjong SC (2013) Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R Rep 74:281–350

    Article  Google Scholar 

  20. Wei H, Li Z, Xiong D-B, Tan Z, Fan G, Qin Z, Zhang D (2014) Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design. Scr Mater 75:30–33

    Article  CAS  Google Scholar 

  21. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  CAS  Google Scholar 

  22. Sharma A, Sagar S, Mahto RP, Sahoo B, Pal SK, Paul J (2018) Surface modification of Al6061 by graphene impregnation through a powder metallurgy assisted friction surfacing. Surf Coat Technol 337:12–23

    Article  CAS  Google Scholar 

  23. Sharma A, Tripathi A, Narsimhachary D, Mahto RP, Paul J (2019) Surface alteration of aluminium alloy by an exfoliated graphitic tribolayer during friction surfacing using a consumable graphite rich tool. Surf Topogr Metrol Prop 7:045015

    Article  CAS  Google Scholar 

  24. Sharma A, Narsimhachary D, Sharma VM, Sahoo B, Paul J (2019) Surface modification of Al6061-SiC surface composite through impregnation of graphene, graphite & carbon nanotubes via FSP: a tribological study. Surf Coat Technol 368:175–191

    Article  CAS  Google Scholar 

  25. Nuriel S, Liu L, Barber AH, Wagner HD (2005) Direct measurement of multiwall nanotube surface tension. Chem Phys Lett 404:263–266

    Article  CAS  Google Scholar 

  26. Mishra RS, Mahoney MW, McFadden SX, Mara NA, Mukherjee AK (1999) High strain rate superplasticity in a friction stir processed 7075 Al alloy. Scr Mater 42:163–168

    Article  Google Scholar 

  27. Mishra RS, Ma ZY, Charit I (2003) Friction stir processing: a novel technique for fabrication of surface composite. Mater Sci Eng A 341:307–310

    Article  Google Scholar 

  28. Sharma A, Sharma VM, Gugaliya A, Rai P, Pal SK, Paul J (2020) Friction stir lap welding of AA6061 aluminium alloy with a graphene interlayer. Mater Manuf Process 35:258–269

    Article  CAS  Google Scholar 

  29. Sharma A, Sharma VM, Mewar S, Pal SK, Paul J (2017) Friction stir processing of Al6061-SiC-graphite hybrid surface composites. Mater Manuf Process 33:1–10

    CAS  Google Scholar 

  30. Sharma A, Sharma VM, Sahoo B, Pal SK, Paul J (2019) Effect of multiple micro channel reinforcement filling strategy on Al6061-graphene nanocomposite fabricated through friction stir processing. J Manuf Process 37:53–70

    Article  Google Scholar 

  31. Sharma A, Sharma VM, Sahoo B, Joseph J, Paul J (2019) Effect of exfoliated few-layered graphene on corrosion and mechanical behaviour of the graphitized Al–SiC surface composite fabricated by FSP. Bull Mater Sci 42:204

    Article  Google Scholar 

  32. Suhuddin U, Mironov S, Krohn H, Beyer M, Dos Santos JF (2012) Microstructural evolution during friction surfacing of dissimilar aluminum alloys. Metall Mater Trans A 43:5224–5231

    Article  CAS  Google Scholar 

  33. Mishra RS, Mahoney MW (2001) Friction stir processing: a new grain refinement technique to achieve high strain rate superplasticity in commercial alloys. Mater Sci Forum 357–359:507–514

    Article  Google Scholar 

  34. Gangil N, Maheshwari S, Siddiquee AN (2018) Multipass FSP on AA6063-T6 Al: strategy to fabricate surface composites. Mater Manuf Process 33:805–811

    Article  CAS  Google Scholar 

  35. Ma ZY (2008) Friction stir processing technology: a review. Metall Mater Trans A 39:642–658

    Article  Google Scholar 

  36. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006a) Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31. Mater Sci Eng A 433:50–54

    Article  Google Scholar 

  37. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006b) MWCNTs/AZ31 surface composites fabricated by friction stir processing. Mater Sci Eng A 419:344–348

    Article  Google Scholar 

  38. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796

    Article  CAS  Google Scholar 

  39. Morisada Y, Fujii H, Nagaoka T, Fukusumi M (2006c) Nanocrystallized magnesium alloy–uniform dispersion of C60 molecules. Scr Mater 55:1067–1070

    Article  CAS  Google Scholar 

  40. Morisada Y, Fujii H, Nagaoka T, Nogi K, Fukusumi M (2007) Fullerene/A5083 composites fabricated by material flow during friction stir processing. Compos Part A Appl Sci Manuf 38:2097–2101

    Article  Google Scholar 

  41. Johannes LB, Yowell LL, Sosa E, Arepalli S, Mishra RS (2006) Survivability of single-walled carbon nanotubes during friction stir processing. Nanotechnology 17:3081–3084

    Article  CAS  Google Scholar 

  42. Lim DK, Shibayanagi T, Gerlich AP (2009) Synthesis of multi-walled CNT reinforced aluminium alloy composite via friction stir processing. Mater Sci Eng A 507:194–199

    Article  Google Scholar 

  43. Izadi H, Gerlich AP (2012) Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon 50:8–13

    Article  Google Scholar 

  44. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014a) Analysis of carbon nanotube shortening and composite strengthening in carbon nanotube/aluminum composites fabricated by multi-pass friction stir processing. Carbon 69:264–274

    Article  CAS  Google Scholar 

  45. Liu ZYY, Xiao BLL, Wang WGG, Ma ZYY (2012a) Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50:1843–1852

    Article  CAS  Google Scholar 

  46. Liu ZY, Xiao BL, Wang WG, Ma ZY (2013) Developing high-performance aluminum matrix composites with directionally aligned carbon nanotubes by combining friction stir processing and subsequent rolling. Carbon 62:35–42

    Article  CAS  Google Scholar 

  47. Choi H, Shin J, Min B, Park J, Bae D (2009) Reinforcing effects of carbon nanotubes in structural aluminum matrix nanocomposites. J Mater Res 24:2610–2616

    Article  CAS  Google Scholar 

  48. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014b) Effect of carbon nanotube orientation on mechanical properties and thermal expansion coefficient of carbon nanotube-reinforced aluminum matrix composites. Acta Metall Sin 27:901–908

    Article  CAS  Google Scholar 

  49. Liu ZY, Xiao BL, Wang WG, Ma ZY (2014c) Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J Mater Sci Technol 30:649–655

    Article  CAS  Google Scholar 

  50. Zhao K, Liu Z-Y, Xiao B-L, Ni D-R, Ma Z-Y (2018) Origin of insignificant strengthening effect of CNTs in T6-treated CNT/6061Al composites. Acta Metall Sin 31:134–142

    Article  CAS  Google Scholar 

  51. Nam DH, Kim YK, Cha SI, Hong SH (2012) Effect of CNTs on precipitation hardening behavior of CNT/Al–Cu composites. Carbon 50:4809–4814

    Article  CAS  Google Scholar 

  52. Du Z, Tan MJ, Guo JF, Wei J (2016a) Friction stir processing of Al-CNT composites. Proc Inst Mech Eng Part L J Mater Des Appl 230:825–833

    CAS  Google Scholar 

  53. Du Z, Tan MJ, Guo JF, Wei J (2016b) Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting. Mater Werkst 47:539–548

    Article  CAS  Google Scholar 

  54. Du ZL, Tan MJ, Guo JF, Wei J, Chua CK (2016) Dispersion of CNTs in selective laser melting printed AlSi10Mg composites via friction stir processing. Mater Sci Forum 879:1915–1920

    Article  Google Scholar 

  55. Liu ZY, Xiao BL, Wang WG, Ma ZY (2012b) Elevated temperature tensile properties and thermal expansion of CNT/2009Al composites. Compos Sci Technol 72:1826–1833

    Article  CAS  Google Scholar 

  56. Liu Q, Ke L, Liu F, Huang C, Xing L (2013) Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater Des 45:343–348

    Article  CAS  Google Scholar 

  57. Deng CF, Wang DZ, Zhang XX, Li AB (2007) Processing and properties of carbon nanotubes reinforced aluminum composites. Mater Sci Eng A 444:138–145

    Article  Google Scholar 

  58. Esawi AMK, Morsi K, Sayed A, Taher M, Lanka S (2010) Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos Sci Technol 70:2237–2241

    Article  CAS  Google Scholar 

  59. Ma ZY, Liu ZY, Xiao BL, Wang WG (2013) Fabrication of carbon nanotube reinforced aluminum matrix composites via friction stir processing. TMS Annu Meet 21–28

  60. Khodabakhshi F, Gerlich AP, Švec P (2017) Reactive friction-stir processing of an Al-Mg alloy with introducing multi-walled carbon nano-tubes (MW-CNTs): Microstructural characteristics and mechanical properties. Mater Charact 131:359–373

    Article  CAS  Google Scholar 

  61. Khodabakhshi F, Nosko M, Gerlich AP (2018) Influence of CNTs decomposition during reactive friction-stir processing of an Al-Mg alloy on the correlation between microstructural characteristics and microtextural components. J Microsc 271:188–206

    Article  CAS  Google Scholar 

  62. Ebrahimzad P, Ghasempar M, Balali M (2017) Friction stir processing of aerospace aluminum alloy by addition of carbon nano tube. Trans Indian Inst Met 70:2241–2253

    Article  CAS  Google Scholar 

  63. Sharma A, Sharma VM, Paul J (2019) A comparative study on microstructural evolution and surface properties of graphene/CNT reinforced Al6061−SiC hybrid surface composite fabricated via friction stir processing. Trans Nonferrous Met Soc China 29:2005–2026

    Article  CAS  Google Scholar 

  64. Xu W, Ke L, Xing L, Zhao X (2011) On the influence of carbon nanotubes on the wear performance and hardness of aluminium matrix composites. Mater Werkst 42:375–378

    Article  CAS  Google Scholar 

  65. Weiping X, Liming K, Li X (2011) Carbon nanoatubes on aluminum matrix composites by friction stir processing. Int Conf Electron Mech Eng Inf Technol 6:2904–2907

    Google Scholar 

  66. Misak HE, Widener CA, Burford DA, Asmatulu R (2014) Fabrication and characterization of carbon nanotube nanocomposites into 2024–T3 Al substrates via friction stir welding process. J Eng Mater Technol 136:024501

    Article  Google Scholar 

  67. Mahmoud ERI, Takahashi M, Shibayanagi T, Ikeuchi K (2009) Effect of friction stir processing tool probe on fabrication of SiC particle reinforced composite on aluminium surface. Sci Technol Weld Join 14:413–425

    Article  CAS  Google Scholar 

  68. Zhang S, Chen G, Wei J, Liu Y, Xie R, Liu Q, Zeng S, Zhang G, Shi Q (2019) Effects of energy input during friction stir processing on microstructures and mechanical properties of aluminum/carbon nanotubes nanocomposites. J Alloys Compd 798:523–530

    Article  CAS  Google Scholar 

  69. Riaz H, Mnazoor T, Raza A (2019) Fabrication and characterization of AA6061/CNTs surface nanocomposite by friction stir processing. Int J Adv Manuf Technol 105:749–769

    Article  Google Scholar 

  70. Sharma A, Fujii H, Paul J (2020) Influence of reinforcement incorporation approach on mechanical and tribological properties of AA6061- CNT nanocomposite fabricated via FSP. J Manuf Process 59:604–620

    Article  Google Scholar 

  71. Xiong QP, Ke LM, Liu FC, Liu Q, Chen XL (2013) Preparation and mechanical property of MWNTs/Al composite wires by rotational friction extrusion processing. Adv Mater Res 833:261–265

    Article  Google Scholar 

  72. Tekiyeh RM, Najafi M, Shahraki S (2019) Machinability of AA7075-T6/carbon nanotube surface composite fabricated by friction stir processing. Proc Inst Mech Eng Part E J Process Mech Eng 233:839–848

    Article  CAS  Google Scholar 

  73. Zhao K, Liu Z, Xiao B, Ma Z (2017) Friction stir welding of carbon nanotubes reinforced Al-Cu-Mg alloy composite plates. J Mater Sci Technol 33:1004–1008

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Sharma.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, A., Gupta, G. & Paul, J. A comprehensive review on the dispersion and survivability issues of carbon nanotubes in Al/CNT nanocomposites fabricated via friction stir processing. Carbon Lett. 31, 339–370 (2021). https://doi.org/10.1007/s42823-020-00207-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42823-020-00207-0

Keywords

Navigation