Skip to main content
Log in

A Tutorial Review on Time-Frequency Analysis of Non-Stationary Vibration Signals with Nonlinear Dynamics Applications

  • General and Applied Physics
  • Published:
Brazilian Journal of Physics Aims and scope Submit manuscript

Abstract

Time-frequency analysis (TFA) for mechanical vibrations in non-stationary operations is the main subject of this article, concisely written to be an introducing tutorial comparing different time-frequency techniques for non-stationary signals. The theory was carefully exposed and complemented with sample applications on mechanical vibrations and nonlinear dynamics. A particular phenomenon that is also observed in non-stationary systems is the Sommerfeld effect, which occurs due to the interaction between a non-ideal energy source and a mechanical system. An application through TFA for the characterization of the Sommerfeld effect is presented. The techniques presented in this article are applied in synthetic and experimental signals of mechanical systems, but the techniques presented can also be used in the most diverse applications and also in the numerical solution of differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Limitations of the fourier transform: Need for a data driven approach. https://pyhht.readthedocs.io/en/latest/tutorials/limitations_fourier.html. Accessed: 2019-12-20

  2. P.S. Addison. The illustrated wavelet transform handbook: introductory theory and applications in science, engineering, medicine and finance (CRC press, Boca Raton, 2017)

    Book  MATH  Google Scholar 

  3. J.P. Amezquita-Sanchez, H.S. Park, H. Adeli, A novel methodology for modal parameters identification of large smart structures using music, empirical wavelet transform, and hilbert transform. Eng. Struct. 147, 148–159 (2017)

    Article  Google Scholar 

  4. J. Andre, A. Kiremidjian, Y. Liao, C. Georgakis, R. Rajagopal, in Structural health monitoring approach for detecting ice accretion on bridge cable using the haar wavelet transform. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2016, vol. 9803, p. 98030F. International Society for Optics and Photonics, (2016)

  5. J. Antoni, The spectral kurtosis: a useful tool for characterising non-stationary signals. Mech. Syst. Signal Process. 20(2), 282–307 (2006)

    Article  ADS  Google Scholar 

  6. F. Auger, P. Flandrin, Y.T. Lin, S. McLaughlin, S. Meignen, T. Oberlin, H.T. Wu, Time-frequency reassignment and synchrosqueezing: An overview. IEEE Signal Process. Mag. 30(6), 32–41 (2013)

    Article  ADS  Google Scholar 

  7. J.M. Balthazar, J.L.P. Felix, R.M.F. Brasil, Short comments on self-synchronization of two non-ideal sources supported by a flexible portal frame structure. Modal Anal. 10(12), 1739–1748 (2004)

    MATH  Google Scholar 

  8. J.M. Balthazar, D.T. Mook, H.I. Weber, R.M. Brasil, A. Fenili, D. Belato, J. Felix, An overview on non-ideal vibrations. Meccanica. 38(6), 613–621 (2003)

    Article  MATH  Google Scholar 

  9. A. Berrian, N. Saito, in Adaptive synchrosqueezing based on a quilted short-time fourier transform. Wavelets and Sparsity XVII. International Society for Optics and Photonics, Vol. 10394, (2017), p. 1039420

  10. K. Blinowska, J. Zygierewicz. Practical biomedical signal analysis using MATLAB (CRC Press, Boca Raton, 2011)

    Book  Google Scholar 

  11. B. Boashash. Time-frequency signal analysis and processing: a comprehensive reference (Academic Press, Cambridge, 2015)

    Google Scholar 

  12. H. Cai, Q. Jiang, L. Li, B.W. Suter, Analysis of adaptive short-time fourier transform-based synchrosqueezing transform. arXiv:1812.11033 (2018)

  13. M. Candon, R. Carrese, H. Ogawa, P. Marzocca, C. Mouser, O. Levinski, Characterization of a 3dof aeroelastic system with freeplay and aerodynamic nonlinearities–part ii: Hilbert–huang transform. Mech. Syst. Signal Process. 114, 628–643 (2019)

    Article  ADS  Google Scholar 

  14. E.S. Carbajo, R.S. Carbajo, C. Mc Goldrick, B. Basu, Asdah: An automated structural change detection algorithm based on the hilbert–huang transform. Mech. Syst. Signal Process. 47(1-2), 78–93 (2014)

    Article  Google Scholar 

  15. N.H. Chandra, A. Sekhar, Fault detection in rotor bearing systems using time frequency techniques. Mech. Syst. Signal Process. 72, 105–133 (2016)

    Article  ADS  Google Scholar 

  16. J. Chen, Z. Li, J. Pan, G. Chen, Y. Zi, J. Yuan, B. Chen, Z. He, Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. 70, 1–35 (2016)

    Article  ADS  Google Scholar 

  17. G.J. Clarke, S.S. Shen, Hilbert–huang transform approach to lorenz signal separation. Adv. Adapt. Data Anal. 7(01n02), 1550004 (2015)

    Article  MathSciNet  Google Scholar 

  18. L. Cohen, Vol. 778. Time-frequency analysis (Prentice Hall, Upper Saddle River, 1995)

    Google Scholar 

  19. L. Comerford, H. Jensen, F. Mayorga, M. Beer, I. Kougioumtzoglou, Compressive sensing with an adaptive wavelet basis for structural system response and reliability analysis under missing data. Comput. Struct. 182, 26–40 (2017)

    Article  Google Scholar 

  20. L. Cveticanin, M. Zukovic, J.M. Balthazar. Dynamics of mechanical systems with non-ideal excitation (Springer, Berlin , 2018)

    Book  MATH  Google Scholar 

  21. I. Daubechies, Vol. 61. Ten lectures on wavelets (SIAM, Philadelphia, 1992)

    Book  MATH  Google Scholar 

  22. I. Daubechies, A nonlinear squeezing of the continuous wavelet transform based on auditory nerve models. Wavelets Med. Biol., 527–546 (1996)

  23. I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: An empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. G. D’Emilia, D. Di Gasbarro, A. Gaspari, E. Natale, in Identification of calibration and operating limits of a low-cost embedded system with mems accelerometer. Journal of Physics: Conference Series, Vol. 882 (IOP Publishing, 2017), p. 012006

  25. J. Deshpande, pyhht documentation (2018)

  26. A.B. Downey. Think DSP: digital signal processing in Python. (O’Reilly Media Inc., Sebastopol, 2016)

    Google Scholar 

  27. T.T. Duc, T. Le Anh, H.V. Dinh, in Estimating modal parameters of structures using arduino platform. International Conference on Advances in Computational Mechanics (Springer, 2017), pp. 1095–1104

  28. P. Flandrin. Explorations in time-frequency analysis (Cambridge University Press, Cambridge, 2018)

    Book  MATH  Google Scholar 

  29. G. Lee, R. Gommers, F. Wasilewski, K. Wohlfahrt, A. O’Leary, H. Nahrstaedt, Contributors, PyWavelets - Wavelet Transforms in Python. https://github.com/PyWavelets/pywt [Online; accessed 2018-12-20] (2006)

  30. J.M. Giron-Sierra. Digital signal processing with matlab examples, volume 1: signals and data, filtering, non-stationary signals, modulation (Springer, Berlin, 2016)

    Google Scholar 

  31. P. Gonċalves, M. Silveira, B.P. Junior, J. Balthazar, The dynamic behavior of a cantilever beam coupled to a non-ideal unbalanced motor through numerical and experimental analysis. J. Sound Vib. 333(20), 5115–5129 (2014)

    Article  ADS  Google Scholar 

  32. A. González, H. Aied, Characterization of non-linear bearings using the hilbert–huang transform. Adv. Mech. Eng. 7(4), 1687814015582120 (2015)

    Article  Google Scholar 

  33. R.C. Guido, A tutorial on signal energy and its applications. Neurocomputing. 179, 264–282 (2016). https://doi.org/10.1016/j.neucom.2015.12.012. http://www.sciencedirect.com/science/article/pii/S0925231215019281

    Article  Google Scholar 

  34. W. Guo, L. Huang, C. Chen, H. Zou, Z. Liu, Elimination of end effects in local mean decomposition using spectral coherence and applications for rotating machinery. Digit. Signal Process. 55, 52–63 (2016)

    Article  Google Scholar 

  35. D. He, X. Wang, S. Li, J. Lin, M. Zhao, Identification of multiple faults in rotating machinery based on minimum entropy deconvolution combined with spectral kurtosis. Mech. Syst. Signal Process. 81, 235–249 (2016)

    Article  ADS  Google Scholar 

  36. F. Hlawatsch, F. Auger. Time-frequency analysis (Wiley Online Library, New York, 2008)

    Book  Google Scholar 

  37. J. Hu, L. Chai, D. Xiong, W. Wang, A novel method of realizing stochastic chaotic secure communication by synchrosqueezed wavelet transform. Digit. Signal Process. 82, 194–202 (2018)

    Article  Google Scholar 

  38. C. Huang, C. Liu, W. Su, Application of cauchy wavelet transformation to identify time-variant modal parameters of structures. Mech. Syst. Signal Process. 80, 302–323 (2016)

    Article  ADS  Google Scholar 

  39. N.E. Huang, Vol. 16. Hilbert-Huang transform and its applications (World Scientific, Singapore, 2014)

    Book  Google Scholar 

  40. N.E. Huang, in Introduction to the hilbert–huang transform and its related mathematical problems. Hilbert–Huang transform and its applications, (World Scientific, 2014), pp. 1–26

  41. N.E. Huang, N.O. Attoh-Okine. The Hilbert-Huang transform in engineering (CRC Press, Boca Raton, 2005)

    Book  MATH  Google Scholar 

  42. N.E. Huang, K. Hu, A.C. Yang, H.C. Chang, D. Jia, W.K. Liang, J.R. Yeh, C.L. Kao, C.H. Juan, C.K. Peng, et al., On holo-hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philos. Trans. A Math. Phys. Eng. Sci. 374(2065), 20150206 (2016)

    ADS  Google Scholar 

  43. N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.C. Yen, C.C. Tung, H.H. Liu, in The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, Vol. 454 (The Royal Society, 1998), pp. 903– 995

  44. F. Huda, I. Kajiwara, N. Hosoya, Damage detection in membrane structures using non-contact laser excitation and wavelet transformation. J. Sound Vib. 333(16), 3609–3624 (2014)

    Article  ADS  Google Scholar 

  45. M. Iwaniec, A. Holovatyy, V. Teslyuk, M. Lobur, K. Kolesnyk, M. Mashevska, in Development of vibration spectrum analyzer using the raspberry pi microcomputer and 3-axis digital mems accelerometer adxl345. 2017 XIIIth International Conference on Perspective Technologies and Methods in MEMS Design (MEMSTECH) (IEEE, 2017), pp. 25–29

  46. A. Jabłoński, M. Żegleń, W. Staszewski, P. Czop, T. Barszcz, in How to build a vibration monitoring system on your own?. Advances in Condition Monitoring of Machinery in Non-Stationary Operations (Springer, 2018), pp. 111– 121

  47. O. Janssens, V. Slavkovikj, B. Vervisch, K. Stockman, M. Loccufier, S. Verstockt, R. Van de Walle, S. Van Hoecke, Convolutional neural network based fault detection for rotating machinery. J. Sound Vib. 377, 331–345 (2016)

  48. Q. Jiang, B.W. Suter, Instantaneous frequency estimation based on synchrosqueezing wavelet transform. Signal Process. 138, 167–181 (2017)

    Article  Google Scholar 

  49. X. Jiang, S. Mahadevan, H. Adeli, Bayesian wavelet packet denoising for structural system identification. Struct. Control Health Monit. 14(2), 333–356 (2007)

    Article  Google Scholar 

  50. Y. Jiang, H. Zhu, Z. Li, A new compound faults detection method for rolling bearings based on empirical wavelet transform and chaotic oscillator. Chaos Solitons Fract. 89, 8–19 (2016)

    Article  ADS  Google Scholar 

  51. Z. Jianwei, Z. Lianghuan, J. Qi, Z. Yu, G. Jia, Research on operating modal parameter identification for high dam discharge structure based on the hilbert-huang transform. J. Vib. Meas. Diag. 4, 32 (2015)

    Google Scholar 

  52. R. Johansson. Signal Processing (Apress, Berkeley, 2019), pp. 573–599

    Google Scholar 

  53. S. Kaloni, M. Shrikhande, Output only system identification based on synchrosqueezed transform. Procedia Eng. 199, 1002–1007 (2017)

    Article  Google Scholar 

  54. R.H. Landau, M. J. Páez, C.C. Bordeianu. Computational physics: problem solving with Python (Wiley, New York, 2015)

    MATH  Google Scholar 

  55. G. Lee, F. Wasilewski, R. Gommers, K. Wohlfahrt, A. O’Leary, H. Nahrstaedt, Pywavelets: Wavelet transforms in python (2006)

  56. Y. Lei, J. Lin, Z. He, M.J. Zuo, A review on empirical mode decomposition in fault diagnosis of rotating machinery. Mech. Syst. Signal Process. 35(1-2), 108–126 (2013)

    Article  ADS  Google Scholar 

  57. V.C. Leite, J.G.B. da Silva, G.F.C. Veloso, L.E.B. da Silva, G. Lambert-Torres, E.L. Bonaldi, de Oliveira L.E.d.L., Detection of localized bearing faults in induction machines by spectral kurtosis and envelope analysis of stator current. IEEE Trans. Ind. Electron. 62(3), 1855–1865 (2014)

    Article  Google Scholar 

  58. C. Li, M. Liang, A generalized synchrosqueezing transform for enhancing signal time–frequency representation. Signal Process. 92(9), 2264–2274 (2012)

    Article  Google Scholar 

  59. L. Li, H. Cai, H. Han, Q. Jiang, H. Ji, Adaptive short-time fourier transform and synchrosqueezing transform for non-stationary signal separation. Signal Process. 166, 107231 (2020)

    Article  Google Scholar 

  60. L. Li, H. Cai, Q. Jiang, Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation. Appl. Comput. Harmon. Anal. 49(3), 1075–1106 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Li, F. Wang, F. Shang, Y. Jia, C. Zhao, D. Kong, Energy spectrum analysis of blast waves based on an improved hilbert–huang transform. Shock Waves. 27(3), 487–494 (2017)

    Article  ADS  Google Scholar 

  62. Z. Li, H.S. Park, H. Adeli, New method for modal identification of super high-rise building structures using discretized synchrosqueezed wavelet and hilbert transforms. Struct. Des. Tall Spec. Build. 26(3), e1312 (2017)

    Article  Google Scholar 

  63. Z. Liang, J. Liang, L. Zhang, C. Wang, Z. Yun, X. Zhang, Analysis of multi-scale chaotic characteristics of wind power based on hilbert–huang transform and hurst analysis. Appl. Energy. 159, 51–61 (2015)

    Article  Google Scholar 

  64. H. Liu, W. Huang, S. Wang, Z. Zhu, Adaptive spectral kurtosis filtering based on morlet wavelet and its application for signal transients detection. Signal Process. 96, 118–124 (2014)

    Article  Google Scholar 

  65. S. Liu, G. Tang, X. Wang, Y. He, Time-frequency analysis based on improved variational mode decomposition and teager energy operator for rotor system fault diagnosis. Math. Probl. Eng. 2016 (2016)

  66. Z. Liu, Q. Zhang, An approach to recognize the transient disturbances with spectral kurtosis. IEEE Trans. Instrum. Meas. 63(1), 46–55 (2013)

    Article  Google Scholar 

  67. J. Lu, Q. Jiang, L. Li, Analysis of adaptive synchrosqueezing transform with a time-varying parameter. Adv. Comput. Math. 46(5), 1–40 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  68. S.H. Mahdavi, H. Abdul Razak, A comparative study on optimal structural dynamics using wavelet functions. Math. Probl. Eng., 2015 (2015)

  69. R.U. Maheswari, R. Umamaheswari, Trends in non-stationary signal processing techniques applied to vibration analysis of wind turbine drive train–a contemporary survey. Mech. Syst. Signal Process. 85, 296–311 (2017)

    Article  ADS  Google Scholar 

  70. J.M. Mahoney, R. Nathan, in Mechanical vibrations modal analysis project with arduinos. ASEE Annual Conference and Exposition, Conference Proceedings, Vol. 2017, (2017)

  71. S. Mallat. A wavelet tour of signal processing: the sparse way (Academic Press, Cambridge, 2008)

    MATH  Google Scholar 

  72. W. Martin, P. Flandrin, Wigner-ville spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech Signal Process. 33(6), 1461–1470 (1985)

    Article  Google Scholar 

  73. C. Mateo, J.A. Talavera, Short-time fourier transform with the window size fixed in the frequency domain. Digit. Signal Process. 77, 13–21 (2018)

    Article  MathSciNet  Google Scholar 

  74. M. Mihalec, J. Slavič, M. Boltežar, Synchrosqueezed wavelet transform for damping identification. Mech. Syst. Signal Process. 80, 324–334 (2016)

    Article  ADS  Google Scholar 

  75. L.A. Montejo, A.L. Vidot-Vega, Synchrosqueezed wavelet transform for frequency and damping identification from noisy signals. Smart Struct. Syst. 9(5), 441–459 (2012)

    Article  Google Scholar 

  76. A.H. Nayfeh, D.T. Mook. Nonlinear oscillations (Wiley, New York , 2008)

    MATH  Google Scholar 

  77. J.P. Noël, G. Kerschen, Nonlinear system identification in structural dynamics: 10 more years of progress. Mech. Syst. Signal Process. 83, 2–35 (2017)

    Article  ADS  Google Scholar 

  78. J. Nunez-Iglesias, S. Van Der Walt, S. Walt, H Dashnow. Elegant SciPy: The art of scientific python (O’Reilly Media Inc., Sebastopol, 2017)

    Google Scholar 

  79. T. Oberlin, S. Meignen, V. Perrier, in The fourier-based synchrosqueezing transform. 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2014), pp. 315–319

  80. V. Ondra, I.A. Sever, C.W. Schwingshackl, in Non-linear system identification using the hilbert-huang transform and complex non-linear modal analysis. Nonlinear Dynamics, Vol. 1 (Springer, 2017), pp. 77–86

  81. P.F. Pai, Nonlinear vibration characterization by signal decomposition. J Sound Vib. 307(3-5), 527–544 (2007)

    Article  ADS  Google Scholar 

  82. A. Pajankar, in Signal processing with scipy. Raspberry Pi Supercomputing and Scientific Programming (Springer, 2017), pp. 139–147

  83. F. Peñaranda, V. Naranjo, R. Verdu-Monedero, G.R. Lloyd, J. Nallala, N. Stone, Multimodal registration of optical microscopic and infrared spectroscopic images from different tissue sections: An application to colon cancer. Digit. Signal Process. 68, 1–15 (2017)

    Article  Google Scholar 

  84. C.A. Perez-Ramirez, J.P. Amezquita-Sanchez, H. Adeli, M. Valtierra-Rodriguez, D. Camarena-Martinez, R.J. Romero-Troncoso, New methodology for modal parameters identification of smart civil structures using ambient vibrations and synchrosqueezed wavelet transform. Eng. Appl. Artif. Intel. 48, 1–12 (2016)

    Article  Google Scholar 

  85. V. Piccirillo, J.M. Balthazar, A.M. Tusset, D. Bernardini, G. Rega, Characterizing the nonlinear behavior of a pseudoelastic oscillator via the wavelet transform. Proc. Inst. Mech. Eng. Pt. C J. Mechan. Eng. Sci. 230(1), 120–132 (2016)

    Article  Google Scholar 

  86. A.D. Poularikas. Understanding digital signal processing with MATLAB\(^{{\circledR }}\) and solutions (CRC Press, Boca Raton, 2017)

  87. Z. Průša, P.L. Søndergaard, N. Holighaus, C. Wiesmeyr, P. Balazs, in The large time-frequency analysis toolbox 2.0. International Symposium on Computer Music Multidisciplinary Research (Springer, 2013), pp. 419–442

  88. H. Qu, T. Li, G. Chen, Multiple analytical mode decompositions (m-amd) for high accuracy parameter identification of nonlinear oscillators from free vibration. Mech. Syst. Signal Process. 117, 483–497 (2019)

    Article  ADS  Google Scholar 

  89. R. Randall, in Applications of spectral kurtosis in machine diagnostics and prognostics. Key Engineering Materials, Vol. 293 (Trans Tech Publ, 2005), pp. 21–32

  90. J. L. Rojo-Álvarez, M. Martínez-Ramón, J. M. Marí, G. Camps-Valls. Digital signal processing with Kernel methods (Wiley Online Library, New York, 2018)

    Book  Google Scholar 

  91. F. Romberg, High-resolution time-frequency analysis of neurovascular responses to ischemic challenges (2012)

  92. A. Sarrafi, Z. Mao, in Statistical modeling of wavelet-transform-based features in structural health monitoring. Model Validation and Uncertainty Quantification, Vol. 3 (Springer, 2016), pp. 253–262

  93. R. Shanmugam, R. Chattamvelli. Statistics for scientists and engineers (Wiley Online Library, New York, 2015)

    Book  MATH  Google Scholar 

  94. Y.L. Sheu, L.Y. Hsu, P.T. Chou, H.T. Wu, Entropy-based time-varying window width selection for nonlinear-type time–frequency analysis. Int. J. Data Sci. Anal. 3(4), 231–245 (2017)

    Article  Google Scholar 

  95. H.G. Stark. Wavelets and signal processing: an application-based introduction (Springer Science & Business Media, New York, 2005)

    Google Scholar 

  96. J. Stark, B.V. Arumugam, Extracting slowly varying signals from a chaotic background. Int. J. Bifur. Chaos. 2(02), 413–419 (1992)

    Article  MATH  Google Scholar 

  97. R.G. Stockwell, L. Mansinha, R. Lowe, Localization of the complex spectrum: the s transform. IEEE Trans. Signal Process. 44(4), 998–1001 (1996)

    Article  ADS  Google Scholar 

  98. A. Teolis, in Signal representation and frames. Computational Signal Processing with Wavelets (Springer, 2017), pp. 29–57

  99. G. Thakur, E. Brevdo, N.S. Fučkar, H.T. Wu, The synchrosqueezing algorithm for time-varying spectral analysis:, Robustness properties and new paleoclimate applications. Signal Process. 93(5), 1079–1094 (2013)

    Article  Google Scholar 

  100. G. Thakur, H.T. Wu, Synchrosqueezing-based recovery of instantaneous frequency from nonuniform samples. SIAM J. Math. Anal. 43(5), 2078–2095 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  101. C. Tong, X. Chen, S. Wang, in Nonlinear squeezing wavelet transform for rotor rub-impact fault detection. Model Validation and Uncertainty Quantification, Vol. 3 (Springer, 2019), pp. 21–29

  102. M. Varanis, J. Balthazar, A. Silva, A. Mereles, R. Pederiva, Remarks on the sommerfeld effect characterization in the wavelet domain. J. Vib. Control. 25(1), 98–108 (2019)

    Article  MathSciNet  Google Scholar 

  103. M. Varanis, J.P. Norenberg, R. Tumolin Rocha, C. Oliveira, J. Balthazar, A. Tusset, Nonlinear dynamics and chaos of the portal frame model as an energy harvester: A time-frequency analysis approach. Sapienza University of Rome (2019)

  104. M. Varanis, J.P.C. Norenberg, R.T. Rocha, C. Oliveira, J.M. Balthazar, A.̂M. Tusset, A comparison of time-frequency methods for nonlinear dynamics and chaos analysis in an energy harvesting model. Braz. J. Phys., 1–10 (2020)

  105. M. Varanis, R. Pederiva, in Wavelet time-frequency analysis with daubechies filters and dimension reduction methods for fault identification induction machine in stationary operations. Proceedings of the 23rd ABCM International Congress of Mechanical Engineering (Cobem2015), (2015)

  106. M. Varanis, R. Pederiva, The influence of the wavelet filter in the parameters extraction for signal classification: An experimental study. Proc. Ser. Braz. Soc. Comput. Appl. Math. 5(1) (2017)

  107. M. Varanis, R. Pederiva, Statements on wavelet packet energy–entropy signatures and filter influence in fault diagnosis of induction motor in non-stationary operations. J. Braz. Soc. Mech. Sci. Eng. 40(2), 98 (2018)

    Article  Google Scholar 

  108. M. Varanis, A. Silva, A. Mereles, R. Pederiva, Mems accelerometers for mechanical vibrations analysis: a comprehensive review with applications. J. Braz. Soc. Mech. Sci. Eng. 40(11), 527 (2018)

    Article  Google Scholar 

  109. M. Varanis, A.L. Silva, P.H.A. Brunetto, R.F. Gregolin, Instrumentation for mechanical vibrations analysis in the time domain and frequency domain using the arduino platform. Revista Brasileira de Ensino de Física 38(1) (2016)

  110. M. Varanis, A.L. Silva, A. Mereles, C. de Oliveira, J.M. Balthazar, Instrumentation of a nonlinear pendulum using arduino. Revista Interdisciplinar de Pesquisa em Engenharia 2(27)

  111. M. Varanis, A.L. Silva, A.G. Mereles, On mechanical vibration analysis of a multi degree of freedom system based on arduino and mems accelerometers. Revista Brasileira de Ensino de Física 40(1) (2018)

  112. M.V. Varanis, A.M. Tusset, J.M. Balthazar, G. Litak, C. Oliveira, R.T. Rocha, A. Nabarrete, V. Piccirillo, Dynamics and control of periodic and non-periodic behavior of duffing vibrating system with fractional damping and excited by a non-ideal motor. J. Franklin Inst. (2019)

  113. V. Vrabie, P. Granjon, C. Serviere, in Spectral kurtosis: from definition to application. 6th IEEE International Workshop on Nonlinear Signal and Image Processing (NSIP 2003), (2003)

  114. A. Vretblad, Vol. 223. Fourier analysis and its applications (Springer Science & Business Media, New York, 2003)

    Book  MATH  Google Scholar 

  115. S. Wang, X. Chen, G. Cai, B. Chen, X. Li, Z. He, Matching demodulation transform and synchrosqueezing in time-frequency analysis. IEEE Trans. Signal Process. 62(1), 69–84 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  116. S. Wang, W. Huang, Z. Zhu, Transient modeling and parameter identification based on wavelet and correlation filtering for rotating machine fault diagnosis. Mech. Syst. Signal Process. 25(4), 1299–1320 (2011)

    Article  ADS  Google Scholar 

  117. S. Wang, L. Yang, X. Chen, C. Tong, B. Ding, J. Xiang, Nonlinear squeezing time-frequency transform and application in rotor rub-impact fault diagnosis. J. Manuf. Sci. Eng. 139(10), 101005 (2017)

    Article  Google Scholar 

  118. Y. Wang, J. Xiang, R. Markert, M. Liang, Spectral kurtosis for fault detection, diagnosis and prognostics of rotating machines: A review with applications. Mech. Syst. Signal Process. 66, 679–698 (2016)

    Article  ADS  Google Scholar 

  119. Z.C. Wang, D. Geng, W.X. Ren, G.D. Chen, G.F. Zhang, Damage detection of nonlinear structures with analytical mode decomposition and hilbert transform. Smart Struct. Syst. 15(1), 1–13 (2015)

    Article  Google Scholar 

  120. Z.C. Wang, W.X. Ren, Parameter identification of closely spaced structural modals based on analytical mode decomposition. Noise Vib. Control. 6, 6 (2013)

    Google Scholar 

  121. A. Widodo, B.S. Yang, Wavelet support vector machine for induction machine fault diagnosis based on transient current signal. Expert Syst. Appl. 35(1-2), 307–316 (2008)

    Article  Google Scholar 

  122. H.T. Wu, Adaptive analysis of complex data sets. Ph.D. thesis, Princeton University (2012)

  123. H.T. Wu, P. Flandrin, I. Daubechies, One or two frequencies? the synchrosqueezing answers. Adv. Adapt. Data Anal. 3(01n02), 29–39 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  124. J.W. Wu, H.B. Bao, Nonlinear dynamics in semiconductor quantum dot laser subject to double delayed feedback: Numerical analysis. Braz. J. Phys. 50(5), 594–601 (2020)

    Article  ADS  Google Scholar 

  125. J. Xiang, Y. Zhong, in A two-step method using duffing oscillator and stochastic resonance to detect mechanical faults. 2016 IEEE International Instrumentation and Measurement Technology Conference Proceedings. https://doi.org/10.1109/I2MTC.2016.7520335, (2016), pp. 1–6

  126. W. Xiang-Li, W. Wen-Bo, Harmonic signal extraction from noisy chaotic interferencebased on synchrosqueezed wavelet transform. Chin. Phys. B. 24(8), 080203 (2015)

    Article  Google Scholar 

  127. R. Yan, R.X. Gao, X. Chen, Wavelets for fault diagnosis of rotary machines: A review with applications. Signal Process. 96, 1–15 (2014)

    Article  Google Scholar 

  128. K. Zhang, X. Chen, L. Liao, M. Tang, J. Wu, A new rotating machinery fault diagnosis method based on local oscillatory-characteristic decomposition. Digit. Signal Process. 78, 98–107 (2018)

    Article  Google Scholar 

  129. Y. Zhao, H. Cui, H. Huo, Y. Nie, Application of synchrosqueezed wavelet transforms for extraction of the oscillatory parameters of subsynchronous oscillation in power systems. Energies. 11(6), 1525 (2018)

    Article  Google Scholar 

  130. R. Zhou, W. Bao, N. Li, X. Huang, D. Yu, Mechanical equipment fault diagnosis based on redundant second generation wavelet packet transform. Digit. Signal Process. 20(1), 276–288 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Varanis.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varanis, M., Silva, A.L., Balthazar, J.M. et al. A Tutorial Review on Time-Frequency Analysis of Non-Stationary Vibration Signals with Nonlinear Dynamics Applications. Braz J Phys 51, 859–877 (2021). https://doi.org/10.1007/s13538-020-00842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13538-020-00842-y

Keywords

Navigation