Skip to main content

Advertisement

Log in

Combined effects of elevated CO2 and temperature on multitrophic interactions involving a parasitoid of plant virus vectors

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Atmospheric concentration of carbon dioxide (CO2) is predicted to double by late twenty-first century, likely increasing global temperature by 2.2 °C. Elevated CO2 (eCO2) and temperature (eT) affect agricultural crops as well as pests and their natural enemies. Changes in any part of multitrophic systems due to environmental factors can affect pest infestation and disease dynamics, as well as the effectiveness of biological control programs. Our study evaluated the effects of eCO2 and eT combined on the performance of the parasitoid Aphidius colemani Vierick (Hymenoptera: Braconidae) when its aphid host Rhopalosiphum padi L. (Hemiptera: Aphididae) was exposed to non-infected or Barley yellow dwarf virus (BYDV–PAV) infected wheat (Triticum aestivum L., Poaceae). Using controlled environment chambers, plant physiology and parasitoid performance were examined under ambient (aCO2&aT; aCO2 = 400 ppm, aT = 20 °C) and elevated (eCO2&eT; eCO2 = 800 ppm, eT = 22 °C) conditions. Virus infection reduced plant biomass and chlorophyll content more pronouncedly under eCO2&eT. Developmental time from oviposition to adult emergence of A. colemani significantly decreased under eCO2&eT, on virus-infected and non-infected plants. However, parasitism rate, sex ratio and pupal survivorship remained unchanged under eCO2&eT, regardless of virus infection. Therefore, we incline to suggest that the biocontrol of R. padi by A. colemani will continue being effective in a future climate with similar conditions as studied here. This study provides empirical data on a particular tritrophic system (plant-pest-parasitoid) affected by plant virus and eCO2&eT, essential to complement scientific knowledge about the impact of climate change on complex interactions of agro-ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free air CO2 enrichment (FACE)? A meta-analytic review of the response of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Ainsworth EA, Rogers A (2007) The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions. Plant, Cell Environ 30(3):258–270

    Article  CAS  Google Scholar 

  • Albittar L, Ismail M, Lohaus G, Ameline A, Visser B, Bragard C, Hance T (2019) Bottom-up regulation of a tritrophic system by Beet yellows virus infection: consequences for aphid-parasitoid foraging behaviour and development. Oecologia 191(1):113–125

    Article  PubMed  Google Scholar 

  • Awmack CS, Woodcock CM, Harrington R (1997) Climate change may increase vulnerability of aphids to natural enemies. Ecol Entomol 22(3):366–368

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack CS, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Glob Chang Biol 8(1):1–16

    Article  Google Scholar 

  • Banks PM, Davidson JL, Bariana H, Larkin PJ (1995) Effects of barley yellow dwarf virus on the yield of winter wheat. Aust J Agric Res 46(6):935–946

    Article  Google Scholar 

  • Bannerman JA, Gillespie DR, Roitberg BD (2011) The impacts of extreme and fluctuating temperatures on trait-mediated indirect aphid-parasitoid interactions. Ecol Entomol 36(4):490–498

    Article  Google Scholar 

  • Batts GR, Morison JKL, Ellis RH, Hadley P, Wheeler TR (1997) Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. Eur J Agron 7:43–52

    Article  Google Scholar 

  • Bezemer TM, Jones TH (1998) Plant-insect herbivore interactions in elevated atmospheric CO2: quantitative analyses and guild effects. Oikos 82(2):212–222

    Article  Google Scholar 

  • Bezemer TM, Jones TH, Knight KJ (1998) Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116:128–135

    Article  PubMed  Google Scholar 

  • Blackman RL, Eastop VF (2007) Taxonomic issues. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, UK, pp 1–29

    Google Scholar 

  • Bosque-Pérez NA, Eigenbrode SD (2011) The influence of virus-induced changes in plants on aphid vectors: Insights from luteovirus pathosystems. Virus Res 159(2):201–205

    Article  PubMed  Google Scholar 

  • Boullis A, Francis F, Verheggen FJ (2015) Climate change and tritrophic interactions: Will modifications to greenhouse gas emissions increase the vulnerability of herbivorous insects to natural enemies? Environ Entomol 44(2):277–286

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ge F, Parajulee MN (2005) Impact of elevated CO2 on tri-trophic interaction of Gossypium hirsutum, Aphis gossypii, and Leis axyridis. Environ Entomol 34(1):37–46

    Article  Google Scholar 

  • Chen FJ, Wu G, Parajulee MN, Ge F (2007) Impact of elevated CO2 on the third trophic level: A predator Harmonia axyridis and a parasitoid Aphidius picipes. Biocontrol Sci Technol 17(3):313–324

    Article  Google Scholar 

  • Christiansen-Weniger P, Powell G, Hardie J (1998) Plant virus and parasitoid interactions in a shared insect vector/host. Entomol Exp Appl 86(2):205–213

    Article  Google Scholar 

  • Comeau A, Collin J, Cheour F (1992) Barley yellow dwarf virus symptoms and ELISA data in relation to biomass and yield loss. In: Comeau A, Makkouk KM (eds) Proceedings of a workshop organized by the International Center for Agricultural Research in the Dry Areas (ICARDA) and International Development Research Centre (IDRC), Rabat, Morocco, 19–21 November 1989. ICARDA, Aleppo, pp 155–168

  • Dáder B, Fereres A, Moreno A, Trębicki P (2016) Elevated CO2 impacts bell pepper growth with consequences to Myzus persicae life history, feeding behaviour and virus transmission ability. Sci Rep 6(1):19120

    Article  PubMed  PubMed Central  Google Scholar 

  • Debaeke P, Rouet P, Justes E (2006) Relationship between the normalized SPAD index and the nitrogen nutrition index: Application to durum wheat. J Plant Nutr 29(1):75–92

    Article  CAS  Google Scholar 

  • del Toro FJ, Rakhshandehroo F, Larruy B, Aguilar E, Tenllado F, Canto T (2017) Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific. Virology 511(August):184–192

    Article  PubMed  Google Scholar 

  • Dyer LA, Richards LA, Short SA, Dodson CD (2013) Effects of CO2 and temperature on tritrophic interactions. PLoS ONE 8(4):e62528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eigenbrode SD, Bosque-pérez NA, Davis TS (2018) Insect-borne plant pathogens and their vectors: Ecology, evolution, and complex interactions. Annu Rev Entomol 63:169–191

    Article  CAS  PubMed  Google Scholar 

  • EPPO (2020) Safe use of biological control. List of biological control agents widely used in the EPPO region. Standard PM6/3, 2020 Version. In: EPPO mBull. https://www.eppo.int/media/uploaded_images/RESOURCES/eppo_standards/pm6/pm6-03-2020-en.pdf. Accessed 20 Aug 2020

  • Facey SL, Ellsworth DS, Staley JT, Wright DJ, Johnson SN (2014) Upsetting the order: How climate and atmospheric change affects herbivore-enemy interactions. Curr Opin Insect Sci 5(1):66–74

    Article  PubMed  Google Scholar 

  • Ferris R, Ellis RH, Wheeler TR, Hadley P (1998) Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Ann Bot 82(5):631–639

    Article  Google Scholar 

  • Finlay KJ, Luck JE (2011) Response of the bird cherry-oat aphid (Rhopalosiphum padi) to climate change in relation to its pest status, vectoring potential and function in a crop-vector-virus pathosystem. Agric Ecosyst Environ 144(1):405–421

    Article  Google Scholar 

  • Fitzgerald GJ, Tausz M, O’Leary GJ, Mollah MR, Tausz-Posch S, Seneweera S, Mock I, Löw M, Partington DL, Mcneil D, Norton RM (2016) Elevated atmospheric [CO2] can dramatically increase wheat yields in semi-arid environments and buffer against heat waves. Glob Chang Biol 22(6):2269–2284

    Article  PubMed  Google Scholar 

  • Gillespie DR, Nasreen A, Moffat CE, Clarke P, Roitberg BD (2012) Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos 121(1):149–159

    Article  Google Scholar 

  • Gray S, Cilia M, Ghanim M (2014) Circulative, “nonpropagative” virus transmission: an orchestra of virus-, insect-, and plant-derived instruments. Advances in Virus Research. Elsevier Inc., Amsterdam, The Netherlands, pp 141–199

    Google Scholar 

  • Hentley WT, Vanbergen AJ, Hails RS, Jones TH, Johnson SN (2014) Elevated atmospheric CO2 impairs aphid escape responses to predators and conspecific alarm signals. J Chem Ecol 40(10):1110–1114

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Powell G (2008) Complex interactions between a plant pathogen and insect parasitoid via the shared vector-host: Consequences for host plant infection. Oecologia 157(3):387–397

    Article  PubMed  Google Scholar 

  • Hoffman TK, Kolb FL (1998) Effects of Barley yellow dwarf virus on yield and yield components of drilled winter wheat. Plant Dis 82(6):620–624

    Article  CAS  PubMed  Google Scholar 

  • Hoover JK, Newman JA (2004) Tritrophic interactions in the context of climate change: a model of grasses, cereal aphids and their parasitoids. Glob Chang Biol 10:1197–1208

    Article  Google Scholar 

  • Hughes L, Bazzaz FA (2001) Effects of elevated CO2 on five plant-aphid interactions. Entomol Exp Appl 99:87–96

    Article  Google Scholar 

  • Idso SB, Kimball BA, Anderson MG, Mauney JR (1987) Effects of atmospheric CO2 enrichment on plant growth: the interactive role of air temperature. Agric Ecosyst Environ 20:1–10

    Article  Google Scholar 

  • IPCC (2013) Summary for policymakers. In: Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Stocker TF Climate Change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, NY, USA

    Google Scholar 

  • Irwin ME, Thresh JM (1990) Epidemiology of barley yellow dwarf: a study in ecological complexity. Annu Rev Phytopathol 28:393–424

    Article  Google Scholar 

  • Jeffs CT, Lewis OT (2013) Effects of climate warming on host – parasitoid interactions. Ecol Entomol 38:209–218

    Article  Google Scholar 

  • Jeger MJ, Chen Z, Cunningham E, Martin G, Powell G (2012) Population biology and epidemiology of plant virus epidemics: From tripartite to tritrophic interactions. Eur J Plant Pathol 133(1):3–23

    Article  Google Scholar 

  • Johnson SN, Ryalls JMW, Karley AJ (2014) Global climate change and crop resistance to aphids: Contrasting responses of lucerne genotypes to elevated atmospheric carbon dioxide. Ann Appl Biol 165(1):62–72

    Article  CAS  Google Scholar 

  • Kimball BA (2016) Crop responses to elevated CO2 and interactions with H2O, N, and temperature. Curr Opin Plant Biol 31:36–43

    Article  CAS  PubMed  Google Scholar 

  • Klaiber J, Dorn S, Najar-Rodriguez AJ (2013) Acclimation to elevated CO2 increases constitutive glucosinolate levels of Brassica plants and affects the performance of specialized herbivores from contrasting feeding guilds. J Chem Ecol 39(5):653–665

    Article  CAS  PubMed  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Dialer E, Dorn S (2013) Elevated carbon dioxide impairs the performance of a specialized parasitoid of an aphid host feeding on Brassica plants. Biol Control 66(1):49–55

    Article  CAS  Google Scholar 

  • Klaiber J, Najar-Rodriguez AJ, Piskorski R, Dorn S (2013) Plant acclimation to elevated CO2 affects important plant functional traits, and concomitantly reduces plant colonization rates by an herbivorous insect. Planta 237(1):29–42

    Article  CAS  PubMed  Google Scholar 

  • Lamichhane JR, Barzman M, Booij K, Boonekamp P, Desneux N, Huber L, Kudsk P, Langrell SRH, Ratnadass A, Ricci P, Sarah JL, Messéan A (2015) Robust cropping systems to tackle pests under climate change. A review Agron Sustain Dev 35(2):443–459

    Article  Google Scholar 

  • Lapierre H, Signoret PA (2004) Viruses and virus diseases of Poaceae (Gramineae). INRA Editions, Paris

    Google Scholar 

  • Malmström CM, Field CB (1997) Virus-induced differences in the response of oat plants to elevated carbon dioxide. Plant, Cell Environ 20(2):178–188

    Article  Google Scholar 

  • Martinou AF, Wright DJ (2007) Host instar and host plant effects on Aphidius colemani. J Appl Entomol 131(9–10):621–624

    Article  Google Scholar 

  • Mauck KE, Chesnais Q, Shapiro LR (2018) Evolutionary determinants of host and vector manipulation by plant viruses. Adv Virus Res 101:189–250

    Article  PubMed  Google Scholar 

  • Medina-Ortega KJ, Bosque-Pérez NA, Ngumbi E, Jiménez-Martínez ES, Eigenbrode SD (2009) Rhopalosiphum padi (Hemiptera: Aphididae) responses to volatile cues from Barley yellow dwarf virus–infected wheat. Environ Entomol 38(3):836–845

    Article  CAS  PubMed  Google Scholar 

  • Miller WA, Rasochová L (1997) Barley yellow dwarf viruses. Annu Rev Phytopathol 35(1):167–190

    Article  CAS  PubMed  Google Scholar 

  • Mitchell RA, Mitchell V, Driscoll S, Franklin J, Lawlor D (1993) Effects of increased CO2 concentration and temperature on growth and yield of winter wheat at two levels of nitrogen application. Plant, Cell Environ 16:521–529

    Article  CAS  Google Scholar 

  • Moiroux J, Chesnais Q, Spicher F, Verrier E, Ameline A (2004) Couty A (2018) Plant virus infection influences bottom-up regulation of a plant-aphid-parasitoid system. J Pest Sci 91(1):361–372

    Google Scholar 

  • Moreno-Delafuente A, Viñuela E, Fereres A, Medina P, Trębicki P (2020) Simultaneous increase in CO2 and temperature alters wheat growth and aphid performance differently depending on virus infection. Insects 11(8):459

    Article  PubMed Central  Google Scholar 

  • Myers SS, Smith MR, Guth S, Golden CD, Vaitla B, Mueller ND, Dangour AD, Huybers P (2017) Climate change and global food systems: Potential impacts on food security and undernutrition. Annu Rev Public Health 38(1):259–277

    Article  PubMed  Google Scholar 

  • Nancarrow N, Aftab M, Freeman A, Rodoni B, Hollaway G, Trębicki P (2018) Prevalence and incidence of yellow dwarf viruses across a climatic gradient: A four-year field study in Southeastern Australia. Plant Dis 102(12):2465–2472

    Article  CAS  PubMed  Google Scholar 

  • Nancarrow N, Constable F, Finlay KJ, Freeman A, Rodoni B, Trębicki P, Vassiliadis S, Yen A, Luck J (2014) The effect of elevated temperature on Barley yellow dwarf virus-PAV in wheat. Virus Res 186:97–103

    Article  CAS  PubMed  Google Scholar 

  • O’Leary GJ, Christy B, Nuttall J, Huth N, Cammarano D, Stöckle C, Basso B, Shcherbak I, Fitzgerald GJ, Luo Q, Farre-Codina I, Palta J, Asseng S (2015) Response of wheat growth, grain yield and water use to elevated CO2 under a Free-Air CO2 Enrichment (FACE) experiment and modelling in a semi-arid environment. Glob Chang Biol 21(7):2670–2686

    Article  PubMed  PubMed Central  Google Scholar 

  • Ode PJ, Johnson SN, Moore BD (2014) Atmospheric change and induced plant secondary metabolites—Are we reshaping the building blocks of multi-trophic interactions? Curr Opin Insect Sci 5(1):57–65

    Article  PubMed  Google Scholar 

  • Poorter H, Pérez-Soba M (2001) The growth response of plants to elevated CO2 under non-optimal environmental conditions. Oecologia 129(1):1–20

    Article  PubMed  Google Scholar 

  • Riedell WE, Kieckhefer RW, Haley SD, Langham MAC, Evenson PD (1999) Winter wheat responses to bird cherry-oat aphids and Barley yellow dwarf virus infection. Crop Sci 39:158–163

    Article  Google Scholar 

  • Rosenblatt AE, Schmitz OJ (2016) Climate change, nutrition, and bottom-up and top-down food web processes. Trends Ecol Evol 31(12):965–975

    Article  PubMed  Google Scholar 

  • Roth SK, Lindroth RLRiL, (1995) Elevated atmospheric CO2: effects on phytochemistry, insect performance and insect-parasitoid interactions. Glob Chang Biol 1(3):173–182

    Article  Google Scholar 

  • Ryalls JMW, Harrington R (2017) Climate and atmospheric change impacts on aphids as vectors of plant diseases. In: Johnson SN, Jones TH (eds) Global climate change and terrestrial invertebrates, First. John Wiley & Sons, Hoboken, NJ, USA, pp 148–175

    Google Scholar 

  • Smyrnioudis IN, Harrington R, Clark SJ, Katis N (2001) The effect of natural enemies on the spread of barley yellow dwarf virus (BYDV) by Rhopalosiphum padi (Hemiptera: Aphididae). Bull Entomol Res 91(04):301–306

    Article  CAS  PubMed  Google Scholar 

  • Stacey DA, Fellowes MDE (2002) Influence of elevated CO2 on interspecific interactions at higher trophic levels. Glob Chang Biol 8(7):668–678

    Article  Google Scholar 

  • Starý P (1975) Aphidius colemani Viereck: its taxonomy, distribution and host range (Hymenoptera: Aphidiidae). Acta ent Bohemosloslov 72:156–163

    Google Scholar 

  • Stiling P, Cornelissen T (2007) How does elevated carbon dioxide (CO2) affect plant-herbivore interactions? A field experiment and meta-analysis of CO2- mediated changes on plant chemistry and herbivore performance. Glob Chang Biol 13(9):1823–1842

    Article  Google Scholar 

  • Sun YC, Feng L, Gao F, Ge F (2011) Effects of elevated CO2 and plant genotype on interactions among cotton, aphids and parasitoids. Insect Sci 18(4):451–461

    Article  CAS  Google Scholar 

  • Sun YC, Yin J, Chen FJ, Wu G, Ge F (2011) How does atmospheric elevated CO2 affect crop pests and their natural enemies? Case histories from China. Insect Sci 18(4):393–400

    Article  Google Scholar 

  • Tougeron K, Damien M, Le Lann C, Brodeur J, van Baaren J (2018) Rapid responses of winter aphid-parasitoid communities to climate warming. Front Ecol Evol 6:173

    Article  Google Scholar 

  • Trębicki P (2020) Climate change and plant virus epidemiology. Virus Res 286:198059

    Article  PubMed  Google Scholar 

  • Trębicki P, Nancarrow N, Bosque-Pérez NA, Rodoni B, Aftab M, Freeman A, Yen A, Fitzgerald GJ (2017) Virus incidence in wheat increases under elevated CO2: A 4-year study of yellow dwarf viruses from a free air carbon dioxide facility. Virus Res 241:137–144

    Article  PubMed  Google Scholar 

  • Trębicki P, Nancarrow N, Cole E, Bosque-Pérez NA, Constable FE, Freeman AJ, Rodoni B, Yen AL, Luck JE, Fitzgerald GJ (2015) Virus disease in wheat predicted to increase with a changing climate. Glob Chang Biol 21(9):3511–3519

    Article  PubMed  Google Scholar 

  • Trębicki P, Vandegeer RK, Bosque-Pérez NA, Powell KS, Dader B, Freeman AJ, Yen AL, Fitzgerald GJ, Luck JE (2016) Virus infection mediates the effects of elevated CO2 on plants and vectors. Sci Rep 6:22785

    Article  PubMed  PubMed Central  Google Scholar 

  • Vassiliadis S, Plummer KM, Powell KS, Trębicki P, Luck JE, Rochfort SJ (2016) The effect of elevated CO2 and virus infection on the primary metabolism of wheat. Funct Plant Biol 43(9):892–902

    Article  CAS  PubMed  Google Scholar 

  • Zamani AA, Talebi A, Fathipour Y, Baniameri V (2007) Effect of temperature on life history of Aphidius colemani and Aphidius matricariae (Hymenoptera: Braconidae), two parasitoids of Aphis gossypii and Myzus persicae (Homoptera: Aphididae). Environ Entomol 36(2):263–271

    Article  PubMed  Google Scholar 

  • Zvereva EL, Kozlov MV (2006) Consequences of simultaneous elevation of carbon dioxide and temperature for plant-herbivore interactions: A metaanalysis. Glob Chang Biol 12(1):27–41

    Article  Google Scholar 

Download references

Acknowledgement

We thank Narelle Nancarrow and Mohammad Aftab for research support as well as Oscar Fung and Andrew Hallett for technical assistance.

Funding

This project was supported by Agriculture Victoria Research, Department of Jobs, Precincts and Regions, Australia; and the Spanish Ministry of Science and Innovation (Research Grants Nos. AGL2013-47603-C2-1-R and AGL2017-83498-c2-2-R). AM was supported by the Spanish Ministry of Education (Fellowship No. FPU2015-05173) and Consejo Social UPM (International research fellowship), Spain.

Author information

Authors and Affiliations

Authors

Contributions

AM, PM, PT conceived and designed the research; AM, PT conducted the experiments; AM, PM, PT analysed the data, wrote manuscript drafts and final version; PT prepared the figures; all authors revised and approved the manuscript.

Corresponding author

Correspondence to Piotr Trębicki.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethics approval

The current research does not involve human participants and/or vertebrate animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Handling Editor: Stefano Colazza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 217 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreno-Delafuente, A., Viñuela, E., Fereres, A. et al. Combined effects of elevated CO2 and temperature on multitrophic interactions involving a parasitoid of plant virus vectors. BioControl 66, 307–319 (2021). https://doi.org/10.1007/s10526-020-10069-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10069-0

Keywords

Navigation