Skip to main content

Advertisement

Log in

Photoautotrophic cultivation of Chlamydomonas reinhardtii in open ponds of greenhouse

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Chlamydomonas reinhardtii is one of the most characterized green algae. The open-pond cultivation can be challenging due to sensitivity of strain to fluctuating environmental conditions and unavailability of low-cost photoautotrophic media. In this study, the photoautotrophic growth of C. reinhardtii was evaluated in 1-m2 open ponds placed in greenhouse. Sodium bicarbonate (NaHCO3) was evaluated as an alternative buffering agent to tris. The effect of buffer and pH was tested. The growth was studied in the presence of various nitrogen [urea and ammonium bicarbonate (NH4HCO3)] sources. In the study, it was found that 125-ppm NaHCO3 as an optimum concentration. The buffering agent in the media was found to have major impact on growth. Without buffering agent, culture did not grow, and pH drop was observed. The sodium bicarbonate-buffered media reported to have the lowest bacterial contamination (18.3%), highest AFDW per OD (0.39 ± 0.027 g/L) and higher Fv/Fm (0.714 ± 0.016), whereas these values were found to be 62%, 0.19 ± 0.02 g/L and 0.537 ± 0.053 for tris-grown culture, respectively. The pH 7.0–7.5 was determined as an optimum, whereas pH 6.5–7.0 and 8.0–8.5 were found to affect the growth and induce palmelloidy. The OD and AFDW of culture grown in NH4HCO3 were found equivalent to a standard nitrogen source (NH4Cl), whereas culture shown poor growth in urea. Based on these data, NH4HCO3 media recipe and the optimized cultivation parameters were selected for photoautotrophic cultivation of Chlamydomonas in greenhouse open ponds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Axelsson L, Mercado JM, Figueroa FL (2000) Utilization of HCO3- at high pH by the brown macroalga Laminaria saccharina. Eur J Phycol 35:53–59

    Article  Google Scholar 

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43(4):735–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatnagar A, Chinnasamy S, Singh M, Das K (2011) Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Appl Energy 88(10):3425–3431

    Article  CAS  Google Scholar 

  • Bhatti S, Colman B (2011) Evidence for the occurrence of photorespiration in synurophyte algae. Photosynth Res 109:251–256

    Article  CAS  PubMed  Google Scholar 

  • Bloom AJSS, Sukrapanna WRL (1992) Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol 99:1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceron García M, Sanchez Miron A, Fernandez Sevilla J, Molina Grima E, Garcia Camacho F (2005) Mixotrophic growth of the microalga Phaeodactylum tricornutum: influence of different nitrogen and organic carbon sources on productivity and biomass composition. Process Biochem 40(1):297–305

    Article  Google Scholar 

  • Dharmadhikari JA, D’Souza JS, Gudiapti M, Dhrmadhikari AK, Rao BJ (2006) Sensitive, real-time monitoring of UV induced stress in live plant cells using an optical trap. Sens Actuators B Chem 115:439–443

    Article  CAS  Google Scholar 

  • Drath M, Kloft N, Batschauer A, Marin K, Novak J, Forchhammer K (2008) Ammonia triggers photodamage of photosystem II in the cyanobacterium Synechocystis sp. strain PCC 6803. Plant Physiol 147(1):206–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabregas J, Vásquez V, Buenaventura C, Otero A (1993) Tris not only controls the pH in microalgal cultures, but also feeds bacteria. J Appl Phycol 5:543–545

    Article  CAS  Google Scholar 

  • Finazzi G (2002) Redox-coupled proton pumping activity in cytochrome b6f, as evidenced by the pH dependence of electron transfer in whole cells of Chlamydomonas reinhardtii. Biochemistry 41(23):7475

    Article  CAS  PubMed  Google Scholar 

  • Gimpel JA, Hyun JS, Schoepp NG (2014) Production of recombinant proteins in microalgae at pilot greenhouse scale. Biotechnol Bioeng 112:339–345

    Article  PubMed  Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 54:1665–1669

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hattorri A (1960) Studies on the metabolism of urea and other nitrogenous compounds in Chlorella ellipsoidea. III. Assimilation Urea Plant Cell Physiol 1:107–115

    Google Scholar 

  • Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive inorganic carbon utilization system in Zostera marina. Aquat Bot 69:55–62

    Article  CAS  Google Scholar 

  • Huege J, Goetze J, Schwarz D, Bauwe H, Hagemann M, Kopka J (2011) Modulation of the major paths of carbon in photorespiratory mutants of Synechocystis. PLoS ONE 6:e16278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunter SH (1946) Organic growth essentials of the aerobic nonsulfur photosynthetic bacteria. J Bact 52:213–221

    Article  CAS  PubMed  Google Scholar 

  • Jamers A, De Coen W (2010) Effect assessment of the herbicide paraquat on a green alga using differential gene expression and biochemical biomarkers. Environ Toxicol Chem 29:893–901

    Article  PubMed  Google Scholar 

  • Jegerschold C, Styring S (1996) Spectroscopic characterization of intermediate steps involved in donor-side-induced photoinhibition of photosystem II. Biochemistry 35:7794–7801

    Article  CAS  PubMed  Google Scholar 

  • Laurinavichene TV, Fedorov AS, Ghirardi ML, Seibert M, Tsygankov AA (2006) Demonstration of sustained hydrogen photoproduction by immobilized, sulfur-deprived Chlamydomonas reinhardtii cells. Int J Hydrogen Energy 31:659–667

    Article  CAS  Google Scholar 

  • Lemaire D, Marie G, Serani L, Larprevote O (2001) Stabilization of gas-phase non-covalent macromolecular complexes in electrospray mass spectrometry using aqueous triethylammonium bicarbonate buffer. Anal Chem 73:1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li C, Lan CQ, Liao D (2018) Effects of sodium bicarbonate on cell growth, lipid accumulation, and morphology of Chlorella vulgaris. Microb Cell Fact 17(1):111

    Article  PubMed  PubMed Central  Google Scholar 

  • Lustigman B, Lee LH, Weiss-Magasic C (1995) Effects of cobalt and pH on the growth of Chlamydomonas reinhardtii. Bull Environ Contam Toxicol 55(1):65–72

    Article  CAS  PubMed  Google Scholar 

  • Markou GD, Vandamme MK (2014) Microalgal and cyanobacterial cultivation: the supply of nutrients. Water Res 65:186–220

    Article  CAS  PubMed  Google Scholar 

  • Melissa A, Scranton JT, Ostrand Francis J, Fields SPM (2015) Chlamydomonas as a model for biofuels and bio-products production. Plant J 82(3):523–531

    Article  Google Scholar 

  • Murru M, Sandgren CD (2004) Habitat matters for inorganic carbon acquisition in 38 species of red macroalgae (Rhodophyta) from Puget Sound, Washington, USA. J Phycol 40:837–845

    Article  CAS  Google Scholar 

  • Olischlager M, Bartsch I, Gutow L, Wiencke C (2013) The effects of ocean acidification on growth and physiology of Ulva lactuca (Chlorophyta) in a rockpool scenario. Phycol Res 61:180–190

    Article  Google Scholar 

  • Peccia J, Haznedaroglu B, Gutierrez J, Zimmerman JB (2013) Nitrogen supply is an important driver of sustainable microalgae biofuel production. Trends Biotechnol 31:134–138

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Escalante FME, De Bashan LE, Bashan Y (2011) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45(1):11–36

    Article  CAS  PubMed  Google Scholar 

  • Richmond A (2004) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Newjersey

    Google Scholar 

  • Rickert KW, Sears J, Beck WF, Brudvig GW (1991) Mechanism of irreversible inhibition of O2 evolution in photosystem II by TRIS (hydroxymethyl)-aminomethane. Biochemistry 30:7888–7894

    Article  CAS  PubMed  Google Scholar 

  • Rochaix J (2001) Assembly, function, and dynamics of the photosynthetic machinery in Chlamydomonas reinhardtii. Plant Physiol 127(4):1394–1398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathe S, Durand PM (2016) Cellular aggregation in Chlamydomonas (Chlorophyceae) is chimaeric and depends on traits like cell size and motility. Eur J Phycol 51(2):129–138

    Article  Google Scholar 

  • Scherholz ML, Curtis WR (2013) Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC Biotechnol 7(13):39

    Article  Google Scholar 

  • Schoepp NG, Stewart RL, Sun V, Quigley AJ (2014) System and method for research-scale outdoor production of microalgae and cyanobacteria. Bioresour Technol 166:273–281

    Article  CAS  PubMed  Google Scholar 

  • Steinman AD, Lamberti GA (1996) Biomass and pigments of benthic algae. In: “methods in stream ecology.” In: Lamberti GA (ed) Hauer FR. Academic Press, San Diego, CA

    Google Scholar 

  • Sturm BSM, Lamer SL (2011) An energy evaluation of coupling nutrient removal from wastewater with algal biomass production. Appl Energy 88:3499–3506

    Article  CAS  Google Scholar 

  • Sultemeyer D, Biehler K, Fock HP (1993) Evidence for the contribution of pseudocyclic photophosphorylation to the energy requirement of the mechanism for concentrating inorganic carbon in Chlamydomonas. Planta 189:235–242

    Article  Google Scholar 

  • Suzana U, Melina G, Estela MP (2008) Deleterious effect of TRIS buffer on growth rates and pigment content of Gracilaria birdiae Plastino and E.C. Oiveira (Gracilariales, Rhodophyta). Acta bot bras 22(3):891–896

    Article  Google Scholar 

  • Tsygankov AA, Kosourov SN, Tolstygina IV, Ghirardi ML, Seibert M (2006) Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int J Hydrogen Energy 31:1574–1584

    Article  CAS  Google Scholar 

  • Visviki I, Santikul D (2000) The pH Tolerance of Chlamydomonas applanata (Volvocales, Chlorophyta). Arch Environ Contam Toxicol 38(2):147–151

    Article  CAS  PubMed  Google Scholar 

  • White DA, Pagarette A, Rooks P, Ali ST (2013) The effect of sodium bicarbonate supplementation on growth and biochemical composition of marine microalgae cultures. J Appl Phycol 25:153–165

    Article  CAS  Google Scholar 

  • Xin L, Hong-ying H, Ke G, Jia Y (2010) Growth and nutrient removal properties of a freshwater microalga Scenedesmus sp. LX1 under different kinds of nitrogen sources. Ecol Eng 36:379–381

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debanjan Sanyal.

Ethics declarations

Conflict of interest

All the authors have seen and approved the final version submitted and do not have any conflict of interest.

Ethical standards

All prevailing local, national, international regulations, conventions and normal scientific ethical practices have been respected. The work has not been published elsewhere either in complete or in part or any other form.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandrashekharaiah, P.S., Paul, V., Kodgire, S. et al. Photoautotrophic cultivation of Chlamydomonas reinhardtii in open ponds of greenhouse. Arch Microbiol 203, 1439–1450 (2021). https://doi.org/10.1007/s00203-020-02124-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-020-02124-2

Keywords

Navigation