Skip to main content
Log in

Research on the measurement of CO2 concentration based on multi-band fusion model

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, a multi-band fusion model to improve the performances of the super-continuum laser absorption spectrometer (SCLAS) of CO2 was proposed and demonstrated. Various concentrations of CO2 were measured by the super-continuum laser in the wavelength of 1425–1445 nm, 1565–1585 nm, and 1595–1615 nm, respectively, at 295 K and 1 atm. The method for derivation of CO2 concentration using the integrated area of spectrum peaks is proposed. Linear models of the CO2 concentration and the integrated area of the absorption peaks in different bands were established, which achieves R2 of 0.9947, 0.9937, and 0.9824, respectively. The measurement accuracy with the models is evaluated with the parameter of relative analysis error (RPD), which results in a of more than 2, indicating reasonable prediction ability of the models. In order to improve the accuracy of the single model, the models of the three bands are weighted and fused based on R2 and RMSE, respectively. One of the fusion models reduces the prediction error and improves the accuracy of the single model effectively by decreasing the maximum relative error from 3.4 to 1.2% for a single model. The experimental results show that SCLAS can measure the CO2 concentration under different environments. The multi-band fusion model proposed here is feasible for CO2 measurement, which provides a new idea and new method for the detection of gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.Y. Chen, Infrared Phys. Technol. 80, 131–137 (2017)

    Article  ADS  Google Scholar 

  2. T. Cai, G. Gao, M. Wang et al., J. Quant. Spectrosc. Radiat. Transfer 201, 136–147 (2017)

    Article  ADS  Google Scholar 

  3. Y.D. Wang, Sens. Actuat. B 225, 188–198 (2016)

    Article  Google Scholar 

  4. L. Liu, A. Mandelis, A. Melnikov et al., Int. J. Thermophys. 37(7), 64 (2016)

    Article  ADS  Google Scholar 

  5. Q. Wang, Z. Wang, J. Chang et al., Opt. Lett. 42(11), 2114 (2017)

    Article  ADS  Google Scholar 

  6. E. Johannes, Sci. Rep. 8, 10312 (2018)

    Article  Google Scholar 

  7. T. Werblinski, S.R. Engel, R. Engelbrecht et al., Opt. Express 21(11), 13656 (2013)

    Article  ADS  Google Scholar 

  8. P.S. Edwards, M.D. Turner, G.W. Kamerman et al., SPIE Proc. 7323, 73230S (2009)

    Article  Google Scholar 

  9. C. Amiot, A. Aalto, P. Ryczkowski et al., Appl. Phys. Lett. 111(6), 061103 (2017)

    Article  ADS  Google Scholar 

  10. Y. Jihyung, Appl. Spectrosc. 70(6), 1063–1071 (2016)

    Article  Google Scholar 

  11. M.J. Hong, Z.Y. Wen, Spectrosc. Spect. Anal. 30(08), 2088–2092 (2010)

    Google Scholar 

  12. G.F. Pan, Research on the modeling method of water quality total nitrogen spectroscopic detection. Jiangnan University, 2014.

  13. Y.J. Wang, L.K. Yang, Y.T. Wang, Appl. Mech. Mater. 239–240, 1395–1398 (2012)

    Article  Google Scholar 

  14. T. Houska, D. Kraus, R. Kiese et al., Biogeosciences 14(14), 1–28 (2017)

    Article  ADS  Google Scholar 

  15. Q.Q. Li, G.W. Li, J.X. Zhang, Spectrochimica acta. Part A Mol. Biomol. Spectrosc. 219, 274–280 (2019)

    Article  ADS  Google Scholar 

  16. Z. J. Shi, K. Li, J. Nat. Sci. Ed. 2, 302–304 (2008)

    Google Scholar 

  17. A. Mouazen, W. Saeys, J. Xing et al., J. Near Infrared Spectrosc. 13(1), 87 (2005)

    Article  ADS  Google Scholar 

  18. B. Kuang, A.M. Mouazen et al., Biosys. Eng. 114(3), 249–258 (2013)

    Article  Google Scholar 

  19. W.Y. Lu, X.R. Zhu, S.C. Yao et al., Infrared Laser Eng. 47(07), 155–160 (2018)

    Google Scholar 

  20. D. Hao, G.Y. Chen, W. Wei et al., Infrared Phys. Technol. 101, 156–161 (2019)

    Article  ADS  Google Scholar 

  21. J. Yang, J. Huang, K.E. Yuan, Infrared Laser Eng. 48, 5 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Key Projects of Hebei Natural Science Foundation (No. E2017201142); Hebei Natural Science Youth Fund (No. D2012201115); 2018 Ministry of Education “Chunhui Program” Cooperative Scientific Research Projects; the Postdoctoral Research Projects in Hebei Province (No. B2016003008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglian Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Di, S., Lv, W. et al. Research on the measurement of CO2 concentration based on multi-band fusion model. Appl. Phys. B 127, 5 (2021). https://doi.org/10.1007/s00340-020-07564-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07564-8

Navigation