Skip to main content
Log in

Invariant Measure for Stochastic Schrödinger Equations

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

Quantum trajectories are Markov processes that describe the time evolution of a quantum system undergoing continuous indirect measurement. Mathematically, they are defined as solutions of the so-called Stochastic Schrödinger Equations, which are nonlinear stochastic differential equations driven by Poisson and Wiener processes. This paper is devoted to the study of the invariant measures of quantum trajectories. Particularly, we prove that the invariant measure is unique under an ergodicity condition on the mean time evolution, and a “purification” condition on the generator of the evolution. We further show that quantum trajectories converge in law exponentially fast toward this invariant measure. We illustrate our results with examples where we can derive explicit expressions for the invariant measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Attal, S., Pautrat, Y.: From repeated to continuous quantum interactions. Ann. Henri Poincaré 7(1), 59–104 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ballesteros, M., Crawford, N., Fraas, M., Fröhlich, J., Schubnel, B.: Perturbation theory for weak measurements in quantum mechanics, systems with finite-dimensional state space. Ann. Henri Poincaré 20(1), 299–335 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Barchielli, A.: Continual measurements in quantum mechanics and quantum stochastic calculus. In: Open quantum systems. III, volume 1882 of Lecture Notes in Math., pp. 207–292. Springer, Berlin, (2006)

  4. Barchielli, A., Belavkin, V.P.: Measurements continuous in time and a posteriori states in quantum mechanics. J. Phys. A 24(7), 1495–1514 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Barchielli, A., Gregoratti, M.: Quantum trajectories and measurements in continuous time, volume 782 of Lecture Notes in Physics. Springer, Heidelberg, The diffusive case (2009)

  6. Barchielli, A., Holevo, A.S.: Constructing quantum measurement processes via classical stochastic calculus. Stoch. Process. Appl. 58(2), 293–317 (1995)

    Article  MathSciNet  Google Scholar 

  7. Barchielli, A., Paganoni, A.M.: On the asymptotic behaviour of some stochastic differential equations for quantum states. Infinite Dimens. Anal. Quantum Probab. Relat. Top. 6(2), 223–243 (2003)

    Article  MathSciNet  Google Scholar 

  8. Bauer, M., Bernard, D., Tilloy, A.: Computing the rates of measurement-induced quantum jumps. J. Phys. Math. Theor. 48(25), 25FT02 (2015)

    Article  MathSciNet  Google Scholar 

  9. Baumgartner, B., Narnhofer, H.: The structures of state space concerning quantum dynamical semigroups. Rev. Math. Phys. 24(02), 1250001 (2012)

    Article  MathSciNet  Google Scholar 

  10. Belavkin, V.P.: Quantum stochastic calculus and quantum nonlinear filtering. J. Multivar. Anal. 42(2), 171–201 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Benoist, T., Fraas, M., Pautrat, Y., Pellegrini, C.: Invariant measure for quantum trajectories. Probab Theory Relat Fields 174, 307–334 (2018)

    Article  MathSciNet  Google Scholar 

  12. Bernardin, C., Chetrite, R., Chhaibi, R., Najnudel, J., Pellegrini, C.: Spiking and collapsing in large noise limits of sde’s. arXiv:1810.05629 (2018)

  13. Bouten, L., van Handel, R.: Quantum filtering: a reference probability approach. arXiv:math-ph/0508006 (2006)

  14. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, New York (2002)

    MATH  Google Scholar 

  15. Carmichael, H.: An Open Systems Approach to Quantum Optics: lectures Presented at the Université Libre de Bruxelles, October 28 to November 4, 1991. Springer (1993)

  16. Dalibard, J., Castin, Y., Mølmer, K.: Wave-function approach to dissipative processes in quantum optics. Phys. Rev. Lett. 68(5), 580–583 (1992)

    Article  ADS  Google Scholar 

  17. Davies, E.B.: Markovian master equations. Commun. Math. Phys. 39(2), 91–110 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  18. Davies, E.B.: Markovian master equations. II. Math. Ann. 219(2), 147–158 (1976)

    Article  MathSciNet  Google Scholar 

  19. Diosi, L.: Quantum stochastic processes as models for state vector reduction. J. Phys. Math. Gen. 21(13), 2885–2898 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ficheux, Q., Jezouin, S., Leghtas, Z., Huard, B.: Dynamics of a qubit while simultaneously monitoring its relaxation and dephasing. Nat. Commun. 9(1), 1926 (2018)

    Article  ADS  Google Scholar 

  21. Gardiner, C.W., Zoller, P.: Quantum noise. Springer Series in Synergetics. Springer-Verlag, Berlin, third edition, (2004). A handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics

  22. Gisin, N.: Quantum measurements and stochastic processes. Phys. Rev. Lett. 52(19), 1657–1660 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  23. Gorini, V., Kossakowski, A., Sudarshan, E.C.G.: Completely positive dynamical semigroups of \(N\)-level systems. J. Math. Phys. 17(5), 821–825 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  24. Haroche, S., Raimond, J.-M.: Exploring the Quantum. Oxford Graduate Texts. Atoms Cavities and Photons. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  25. Hudson, R.L., Parthasarathy, K.R.: Quantum Ito’s formula and stochastic evolutions. Commun. Math. Phys. 93(3), 301–323 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  26. Jacod, J., Shiryaev, A.N.: Limit theorems for stochastic processes, volume 288 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  27. Kabanov, J.M., Lipcer, R.Š., Širjaev, A.: Absolute continuity and singularity of locally absolutely continuous probability distributions. i. Math. USSR-Sbornik 35(5), 631 (1979)

    Article  Google Scholar 

  28. Karlin, S., Taylor, H.M.: A second course in stochastic processes. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London (1981)

  29. Kümmerer, B., Maassen, H.: A pathwise ergodic theorem for quantum trajectories. J. Phys. A 37(49), 11889–11896 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  30. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48(2), 119–130 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  31. Maassen, H., Kümmerer, B.: Purification of quantum trajectories. Lect. Notes-Monogr. Ser. 48, 252–261 (2006)

    Article  MathSciNet  Google Scholar 

  32. Mac Lane, S., Birkhoff, G.: Algebra, third edn. Chelsea Publishing Co., New York (1988)

    MATH  Google Scholar 

  33. Pellegrini, C.: Existence, uniqueness and approximation of a stochastic Schrödinger equation: the diffusive case. Ann. Prob. 36(6), 2332–2353 (2008)

    Article  MathSciNet  Google Scholar 

  34. Pellegrini, C.: Poisson and diffusion approximation of stochastic master equations with control. Ann. Henri Poincaré 10(5), 995–1025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  35. Pellegrini, C.: Markov chains approximation of jump-diffusion stochastic master equations. Ann. Inst. Henri Poincaré Probab. Stat. 46(4), 924–948 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ticozzi, F., Viola, L.: Quantum Markovian subsystems: invariance, attractivity, and control. IEEE Trans. Autom. Control 53(9), 2048–2063 (2008)

    Article  MathSciNet  Google Scholar 

  37. Wiseman, H.M., Milburn, G.J.: Quantum Measurement and Control. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  38. Wolf, M.M.: Quantum channels & operations: Guided tour. http://www-m5.ma.tum.de/foswiki/pub/M5/Allgemeines/MichaelWolf/QChannelLecture.pdf, (2012). Lecture notes based on a course given at the Niels-Bohr Institute

Download references

Acknowledgements

The research of T.B., Y.P. and C.P. has been supported by the ANR project StoQ ANR-14-CE25-0003-01. The research of T.B. has been supported by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX-0002-02. The research of M.F. was supported in part by funding from the Simons Foundation and the Centre de Recherches Mathématiques, through the Simons-CRM scholar-in-residence program. Y.P. acknowledges the support of ANR project NonStops ANR-17-CE40-0006 and of the Cantab Capital Institute for the Mathematics of Information at the University of Cambridge.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Benoist.

Additional information

Communicated by Alain Joye.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benoist, T., Fraas, M., Pautrat, Y. et al. Invariant Measure for Stochastic Schrödinger Equations. Ann. Henri Poincaré 22, 347–374 (2021). https://doi.org/10.1007/s00023-020-01001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-020-01001-4

Navigation