Skip to main content

Advertisement

Log in

Enteric methane mitigation and fermentation kinetics of forage species from Southern Mexico: in vitro screening

  • Published:
Agroforestry Systems Aims and scope Submit manuscript

Abstract

Enteric methane (CH4) emission from ruminant livestock is one of the main sources of greenhouse gases from the agricultural sector worldwide. In tropical regions there is a wide variety of forage species that have the capacity to improve cattle diets and reduce enteric CH4 emissions. A screening trial was conducted to investigate the nutrient and phytochemical composition, total gas and CH4 production of fifteen tropical multipurpose forage species from Southern Mexico. The content of crude protein (CP), neutral detergent fiber (NDF) and gross energy fluctuated among species, from 99.07 to 264.4, from 275.19 to 614.35 g kg−1 dry matter (DM) and from 15.65 to 20.92 MJ kg−1 DM. In vitro digestibility of DM (IVDDM) was lower for the species containing condensed tannins (CT) and fluctuated between 447.44 and 709.94 g kg−1 DM. Bursera simaruba showed the lowest CH4 production (9.077 mg g−1 degraded organic matter) with a CT content of 200 g kg−1 DM. Results suggest that several plant species widely available in Southern Mexico present high potential for mitigating enteric CH4 production and have a high nutritional quality. These species are suitable as additive or supplementary feed to improve diet quality and reduce CH4 emissions in cattle raised under grazing conditions in the tropical regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aboagye IA, Beauchemin KA (2019) Potential of molecular weight and structure of tannins to reduce methane emissions from ruminants: a review. Animals 9:856

    Article  Google Scholar 

  • Albores-Moreno S, Alayón-Gamboa JA, Miranda-Romero LA, Alarcón-Zúñiga B, Jiménez-Ferrer G, Ku-Vera JC, Piñeiro-Vázquez AT (2018) Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants. Trop Anim Health Prod 58:893–904. https://doi.org/10.1007/s11250-018-1772-7

    Article  Google Scholar 

  • Albores-Moreno S, Alayón-Gamboa JA, Morón-Ríos A et al (2020) Influence of the composition and diversity of tree fodder grazed on the selection and voluntary intake by cattle in a tropical forest. Agrofor Syst. https://doi.org/10.1007/s10457-020-00483-9

    Article  Google Scholar 

  • AOAC (1990) Official methods of analysis, 15th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • AOAC (2005) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Washington, DC

    Google Scholar 

  • Arango J, Ruden A, Martinez-Baron D, Loboguerrero AM, Berndt A, Chacón M, Torres CF, Oyhantcabal W, Gomez CA, Ricci P, Ku-Vera J, Burkart S, Moorby J, Chirinda N (2020) Ambition meets reality: achieving GHG emission reduction targets in the livestock sector of Latin America. Front Sustain Food Syst 4:65. https://doi.org/10.3389/fsufs.2020.00065

    Article  Google Scholar 

  • Beauchemin KA, Ungerfeld EM, Eckard RJ, Wang M (2020) Review: fifty years of research on rumen methanogenesis: lessons learned and futurechallenges for mitigation. Animal. 14:s2–16. https://doi.org/10.1017/S1751731119003100

    Article  CAS  PubMed  Google Scholar 

  • Bhatta R, Saravanan M, Baruah L, Sampath KT, Prasad CS (2013) Effect of plant secondary compounds on in vitro methane, ammonia production and ruminal protozoa population. J Appl Microbiol 115:455–465

    Article  CAS  Google Scholar 

  • Covaleda S, Aguilar S, Ranero A, Marín I, Paz F (2014) Diagnóstico sobre determinantes de deforestación en Chiapas. Technical report. US-AID-Alianza México REDD+, México. http://sis.cnf.gob.mx/wp-content/plugins/conafor-files/2018/nacional/catalogo/biblioteca/101.pdf. Accessed 10 Aug 2019

  • Domínguez XA (1979) Métodos de investigación fitoquímica. Editorial Limusa, México

    Google Scholar 

  • Douterlungen D (2013) Árboles de Rápido Crecimiento para la Restauración Ecológica y la Capatura de Carbono en el Trópico Húmero Mexicano. Dissertation. El Colegio de la Frontera Sur (ECOSUR), México

  • Flores-González A, Jiménez-Ferrer G, Castillo-Santiago MA, Ruiz de Oña C, Covaleda S (2018) Adoption of sustainable cattle production technologies in the Lacandon rainforest, Chiapas, México. Int J Agric Res Innov Technol 7:2

    Google Scholar 

  • García del Valle Y, Naranjo E, Caballero J, Martorell C, Ruan-Soto F, Enríquez P (2015) Cultural significance of wild mammals in mayan and mestizo communities of the Lacandon Rainforest, Chiapas, Mexico. J Ethnobiol Ethnomed 11:36

    Article  Google Scholar 

  • Gaviria-Uribe X, Bolivar D, Rosenstock T, Molina-Botero IC, Chirinda N, Barahona R, Arango J (2020) Nutritional quality, voluntary intake and enteric methane emissions of diets based on novel Cayman grass and its associations with two Leucaena shrub legumes. Vet Sci Front. https://doi.org/10.3389/fvets.2020.579189

    Article  Google Scholar 

  • Goering HK, Van Soest PJ (1970) Forage fiber analysis. Agricultural handbook no. 379. US, Department of Agriculture, Washington, DC, pp 1–20

  • Hagerman AE, Butler LG (1978) Protein precipitation method for the quantitative determination of tannins. J Agric Food Chem 26:809–812

    Article  CAS  Google Scholar 

  • Hassan Adeyemi MM (2011) A review of secondary metabolites from plant materials for post harvest storage. JPAST 6(2):94–102

    Google Scholar 

  • Jiménez-Ferrer G, Velazco-Pérez R, Uribe GM, Soto-Pinto L (2008) Livestock and local knowledge of fodder trees and shrubs in Lacandon rainforest, Chiapas, Mexico. Zoot Trop 26:333–337

    Google Scholar 

  • Lavrenčič A, Stefanon B, Susmel P (1997) An evaluation of the Gompertz model in degradability studies of forage chemical components. J Anim Sci 64:423–431

    Article  Google Scholar 

  • López Herrera MA, Rivera Lorca JA, Ortega Reyes L, Escobedo Mex JG, Magaña Magaña MA, Sanginés García JR, Sierra Vázquez AC (2008) Contenido nutritivo y factores antinutricionales de plantas nativas forrajeras del norte de Quintana Roo. Rev Mex Cienc Pecu 46:205–215

    Google Scholar 

  • Makkar HPS, Blummel M, Becker K (1995) In vitro effects of and interactions between tannins and saponins and fate of tannins in the rumen. J Sci Food Agric 69:481–493

    Article  CAS  Google Scholar 

  • Martin C, Morgavi DP, Doreau M (2010) Methane mitigation in ruminants: from microbe to the farm scale. Animal 4:351–365. https://doi.org/10.1017/S1751731109990620

    Article  CAS  PubMed  Google Scholar 

  • Melesse A, Steingass H, Schollenberger M, Holstein J, Rodehutscord M (2017) Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agrofor Syst 93:135–147

    Article  Google Scholar 

  • Melesse A, Steingass H, Schollenberger M, Holstein J, Rodehutscord M (2019) Nutrient compositions and in vitro methane production profiles of leaves and whole pods of twelve tropical multipurpose tree species cultivated in Ethiopia. Agroforest Syst 93:135–147. https://doi.org/10.1007/s10457-017-0110-9

    Article  Google Scholar 

  • Menke KH, Steingass H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28:7–55

    Google Scholar 

  • Molina-Botero IC, Arroyave-Jaramillo J, Valencia-Salazar S, Barahona-Rosales R, Aguilar-Pérez CF, Ayala Burgos A, Arango J, Ku-Vera JC (2019) Effects of tannins and saponins contained in foliage of Gliricidia sepium and pods of Enterolobium cyclocarpum on fermentation, methane emissions and rumen microbial population in crossbred heifers. Anim Feed Sci Technol 251:1–11

    Article  CAS  Google Scholar 

  • Molina-Botero IC, Mazabel J, Arceo-Castillo J, Urrea-Benitez JL, Olivera-Castillo L, Barahona-Rosales R, Chirinda N, Ku-Vera J, Arango J (2020) Effect of the addition of Enterolobium cyclocarpum pods and Gliricidia sepium forage on dry matter degradation, volatile fatty acid concentration, and in vitro methane production. Trop Anim Health Prod. https://doi.org/10.1007/s11250-020-02324-4

    Article  PubMed  Google Scholar 

  • Patra AK, Min BR, Saxena J (2012) Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In: Patra AK (ed) Dietary phytochemicals and microbes, vol 237. Springer Netherlands, Dordrecht, p 62

    Chapter  Google Scholar 

  • Patra AK, Park T, Kim M, Yu Z (2017) Rumen methanogens and mitigation of methane emissions by anti-methanogenic compounds and substances. J Anim Sci Biotechnol 8:13. https://doi.org/10.1186/s40104-017-0145-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paz-Cortés J (2010) Contenido nutritivo del follaje de especies arbóreas y arbustivas forrajeras de la selva Lacandona, Chiapas y el microensilado de Gliricidia sepium. Dissertation. Universidad Autónoma de Chiapas, México

  • Pinto-Ruiz R, Gómez H, Martínez B, Hernández A, Medina FJ, Gutiérrez R, Escobar E, Vázquez J (2005) Forage trees and shrubs from the south of México. Past y Forr 28:87–97

    Google Scholar 

  • Rao I, Peters M, Castro A, Schultze-Kraft R, White D, Fisher M, Miles J, Lascano C, Blümmel M, Bungenstab D, Rudel T (2015) LivestockPlus—the sustainable intensification of forage-based agricultural systems to improve livelihoods and ecosystem services in the tropics. Trop Grassl Forrajes Trop 3:59–82

    Article  Google Scholar 

  • Rira M, Morgavi DP, Genestoux L, Djibiri S, Sekhri I, Doreau M (2019) Methanogenic potential of tropical feeds rich in hydrolysable tannins. J Anim Sci 97:2700–2710. https://doi.org/10.1093/jas/skz199

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Villanueva H, Puch-Rodríguez J, Muñoz-González J, Saginés-García J, Aguilar-Urquizo E, Chay-Canul A, Casanova-Lugo F, Jiménez-Ferrer G, Alayón-Gamboa J, Piñeiro-Vázquez A (2019) Intake, digestibility, and nitrogen balance in hair sheep fed Pennisetum purpureum supplemented with tropical tree foliage. Agrofor Syst. https://doi.org/10.1007/s10457-019-00439-8

    Article  Google Scholar 

  • SAS Institute (2012) User’s guide: statistics version 9.4. SAS Institute Inc., Cary

    Google Scholar 

  • Seresinhe T, Madushika SAC, Seresinhe Y, Lal PK, Orskov ER (2012) Effects of tropical high tannin non legume and low tannin legume browse mixtures on fermentation parameters and methanogenesis using gas production technique. Asian-Australas J Anim Sci 25:1404–1410

    Article  CAS  Google Scholar 

  • Smith MR, Lequerica JL, Hart MR (1985) Inhibition of methanogenesis and carbon metabolism in Methanosarcina sp. by cyanide. J Bacteriol 162(1):67

    Article  CAS  Google Scholar 

  • Soltan YA, Morsy AS, Sallam SMA, Louvandini H, Abdalla AL (2012) Comparative in vitro evaluation of forage legumes (prosopis, acacia, atriplex, and leucaena) on ruminal fermentation and methanogenesis. J Anim Feed Sci 21:759–772

    Article  Google Scholar 

  • Soulard JP (2003) Ganadería indígena en dos regiones de Chiapas, México. Dissertation. Instituto National Agronomique Paris-Grignon, France

  • Theodorou MK, Williams BA, Dhanoa MS, McAllan AB, France J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim Feed Sci Technol 48:185–197

    Article  Google Scholar 

  • Tilley JMA, Terry RA (1963) A two-stage technique for the in vitro digestion of forage crops. J Br Grassl Soc 18:104–111

    Article  CAS  Google Scholar 

  • Valencia-Salazar S, Piñeiro AT, Molina IC, Lazos FJ, Uuh JJ, Segura M, Ramírez L, Solorio FJ, Ku JC (2018) Potential of Samanea saman pod meal for enteric methane mitigation in crossbred heifers fed low-quality tropical grass. Agric For Meteorol 258:108–116. https://doi.org/10.1016/j.agrformet.2017.12.262

    Article  Google Scholar 

  • Velasco-Pérez LR (2007) Conocimiento Local de Árboles y Arbustos Forrajeros en la Región de la Selva Lacandona, Chiapas, México. Dissertation. Universidad Autónoma de Chapingo, México

  • Vongsamphanh P, Inthapanya S, Preston T, Van Dung D, Xuan Ba N (2018) Effect of leaves from sweet or bitter cassava and brewers’ grains on methane production in an in vitro rumen incubation of cassava root pulp-urea. Livest. Res Rural Dev 30:167 http://www.lrrd.org/lrrd30/9/phant30167.html

    Google Scholar 

  • Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q (2018) Response of plant secondary metabolites to environmental factors. Molecules 23:762

    Article  Google Scholar 

  • Yusuf AO, Egbinola OO, Ekunseitan DA et al (2020) Chemical characterization and in vitro methane production of selected agroforestry plants as dry season feeding of ruminants livestock. Agrofor Syst. https://doi.org/10.1007/s10457-019-00480-7

    Article  Google Scholar 

  • Zavaleta CC, Orellana MC, Vera AN, Manterola BH, Castellaro GG, Parraguez GP (2019) Reducción de metano in vitro con el glucósido cianogénico Linamarina. Rev MVZ Cordoba 24(3):7291–7296. https://doi.org/10.21897/rmvz.1526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all donors that globally support the work of the CRP programs through their contributions to the CGIAR system. A special thanks to the University of the Jungle, Ocosingo, for facilitating their spaces for the handling of the samples, to the anthropologist Lorenzo Hernandez for his collaboration in fieldwork and translations in Tzeltal and to the chemist Johana Mazabel from the Laboratory of Animal Nutrition and Forage Quality of CIAT for making available the personnel and laboratory equipment for analysis.

Funding

This study is part of the LivestockPlus project funded by the CGIAR Research Program (CRP) on Climate Change, Agriculture and Food Security (CCAFS). In addition, this work was also done as part of the Livestock CRP. Thanks to National Science and Technology Council (CONACYT, Mexico) for the funding of the project “Quantification of enteric methane and nitrous oxide emissions in cattle grazing and the design of strategies for its mitigation in Southern Mexico” (SEP-CONACYT CB 2014 No. 242541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara S. Valencia-Salazar.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valencia-Salazar, S.S., Jiménez-Ferrer, G., Arango, J. et al. Enteric methane mitigation and fermentation kinetics of forage species from Southern Mexico: in vitro screening. Agroforest Syst 95, 293–305 (2021). https://doi.org/10.1007/s10457-020-00585-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10457-020-00585-4

Keywords

Navigation