Skip to main content

Advertisement

Log in

Molecular Identification, Transcriptome Sequencing and Functional Annotation of Pulex irritans

  • Original Paper
  • Published:
Acta Parasitologica Aims and scope Submit manuscript

Abstract

Purpose

Pulex irritans are vectors of various zoonotic pathogens. However, molecular studies on P. irritans and flea-borne diseases are limited due to the lack of molecular data. This study aimed to conduct transcriptome sequencing, functional annotation, and pathogen analysis of P. irritans.

Methods

Fleas collected from a dog were identified morphologically and molecularly. RNA was extracted for transcriptome sequencing and functional annotation. Open reading frames (ORFs) of unigenes were confirmed by employing bioinformatics strategies, and maximum likelihood (ML) trees were reconstructed based on the highly expressed genes of ejaculation globulin-specific 3-like protein, salivary protein, and actin for phylogenetic relationship analysis.

Results

The obtained mitochondrial 16S rRNA gene sequences showed 99.71% of similarity with P. irritans obtained from GenBank database. Transcriptome sequencing generated 74,412 unigenes, of which 53,211 were functionally annotated. A total of 195 unigenes were assigned to fleas, of which 69 contained complete ORFs. Phylogenetic trees of both ejaculatory globulin and salivary protein genes demonstrated that P. irritans first clustered with Pulicidae sp., indicating the reliability of transcriptome data. It is noteworthy that 1070 unigenes were assigned to Hymenolepis microstoma and Dipylidium caninum, of which 62 contained complete ORFs. The phylogenetic tree of the actin gene showed that the unigenes had closer relationships with Echinococcus sp., suggesting the role of P. irritans as intermediate hosts of tapeworms.

Conclusion

The results of this study provide the possibility for functional exploration of important genes and lay foundations for the prevention and control of P. irritans and flea-borne diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bourne D, Craig M, Crittall J, Elsheikha H, Griffiths K, Keyte S, Merritt B, Stokes L, Whitfield V, Wilson A (2018) Fleas and flea-borne diseases: biology, control and compliance. Companion Anim 23:204–211. https://doi.org/10.12968/coan.2018.23.4.201

    Article  Google Scholar 

  2. Cheng J, Liu CC, Zhao YE, Hu L, Yang YJ, Yang F, Shi ZY (2015) Population identification and divergence threshold in Psoroptidae based on ribosomal ITS2 and mitochondrial COI genes. Parasitol Res 114:3497–3507. https://doi.org/10.1007/s00436-015-4578-9

    Article  Google Scholar 

  3. Ehlers J, Krüger A, Rakotondranary SJ, Ratovonamana RY, Poppert S, Ganzhorn JU, Tappe D (2020) Molecular detection of Rickettsia spp., Borrelia spp., Bartonella spp. and Yersinia pestis in ectoparasites of endemic and domestic animals in southwest Madagascar. Acta Trop 205:105339. https://doi.org/10.1016/j.actatropica.2020.105339

    Article  CAS  PubMed  Google Scholar 

  4. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. https://doi.org/10.1111/j.1558-5646.1985.tb00420.x

    Article  PubMed  Google Scholar 

  5. Gamerschlag S, Mehlhorn H, Heukelbach J, Feldmeier H, D’Haese J (2008) Repetitive sequences in the ITS1 region of the ribosomal DNA of Tunga penetrans and other flea species (Insecta, Siphonaptera). Parasitol Res 102:193–199. https://doi.org/10.1007/s00436-007-0743-0

    Article  PubMed  Google Scholar 

  6. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N, Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K, Friedman N, Regev A (2011) Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol 29:644–652. https://doi.org/10.1038/nbt.1883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gracio AJD, Gracio MAA (2017) Plague: a millenary infectious disease reemerging in the XXI century. Biomed Res Int. https://doi.org/10.1155/2017/5696542

    Article  PubMed  PubMed Central  Google Scholar 

  8. Langmead B, Salzberg S (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/NMETH.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lawrence AL, Hii SF, Jirsova D, Panakova L, Ionica AM, Gilchrist K, Modry D, Mihalca AD, Webb CE, Traub RJ, Slapeta J (2015) Integrated morphological and molecular identification of cat fleas (Ctenocephalides felis) and dog fleas (Ctenocephalides canis) vectoring Rickettsia felis in central Europe. Vet Parasitol 210:215–223. https://doi.org/10.1016/j.vetpar.2015.03.029

    Article  CAS  PubMed  Google Scholar 

  10. Leulmi H, Socolovschi C, Laudisoit A, Houemenou G, Davoust B, Bitam I, Raoult D, Parola P (2014) Detection of Rickettsia felis, Rickettsia typhi, Bartonella species and Yersinia pestis in Fleas (Siphonaptera) from Africa. PLoS Negl Trop Dis 8:e3152. https://doi.org/10.1371/journal.pntd.0003152

    Article  PubMed  PubMed Central  Google Scholar 

  11. Marquez FJ, Millan J, Rodriguez-Liebana JJ, Garcia-Egea I, Muniain MA (2009) Detection and identification of Bartonella sp. in fleas from carnivorous mammals in Andalusia. Spain Med Vet Entomol 23:393–398. https://doi.org/10.1111/j.1365-2915.2009.00830.x

    Article  CAS  PubMed  Google Scholar 

  12. Mckern JA, Szalanski AL, Austin JW, Gold RE (2008) Genetic diversity of field populations of the cat flea, Ctenocephalides felis and the human flea, Pulex irritans, in the United States. J Agr Urban Entomol 25:259–263. https://doi.org/10.3954/1523-5475-25.4.259

    Article  Google Scholar 

  13. Mu L (2018) Flea. In: Zhu XP, Su C (eds) Human parasitology, 9th edn. People’s Medical Publishing House, Beijing, p 224

    Google Scholar 

  14. Munkhzul T, Murdoch JD, Reading RP (2018) Ectoparasites on meso-carnivores in the desert-steppe of Mongolia. Mong J Biol Sci 16:43–48. https://doi.org/10.22353/mjbs.2018.16.06

    Article  Google Scholar 

  15. Nicoll W (1911) The rat flea as the intermediate host of a rat tapeworm. Br Med J 1:621–621. https://doi.org/10.1136/bmj.1.2620.621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Opazo A, Barrientos C, Sanhueza AM, Urrutia N, Fernandez I (2019) Parasitic fauna in dogs (Canis lupus familiaris) of a rural sector in the central region of Chile. Revista De Investig Vet Del Peru 30:330–338. https://doi.org/10.15381/rivep.v30i1.15683

    Article  Google Scholar 

  17. Pertea G, Huang XQ, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652. https://doi.org/10.1093/bioinformatics/btg034

    Article  CAS  PubMed  Google Scholar 

  18. Vobis M, D’Haese J, Mehlhorn H, Mencke N, Blagburn B, Bond R, Denholm I, Dryden MW, Payne P, Rust MK, Schroeder I, Vaughn MB, Bledsoe D (2004) Molecular phylogeny of isolates of Ctenocephalides felis and related species based on analysis of ITS1, ITS2 and mitochondrial 16S rDNA sequences and random binding primers. Parasitol Res 94:219–226. https://doi.org/10.1007/s00436-004-1201-x

    Article  CAS  PubMed  Google Scholar 

  19. Whiting MF, Whiting AS, Hastriter MW, Dittmar K (2008) A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics 24:677–707. https://doi.org/10.1111/j.1096-0031.2008.00211.x

    Article  Google Scholar 

  20. Zhao DQ, Jiang Y, Ning CL, Meng JS, Lin SS, Ding W, Tao J (2014) Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genom 15:689. https://doi.org/10.1186/1471-2164-15-689

    Article  CAS  Google Scholar 

  21. Zhao YE, Hu L, Yang YJ, Niu DL, Wang RL, Li WH, Ma SJ, Cheng J (2016) Improvement on the extraction method of RNA in mites and its quality test. Parasitol Res 115:851–858. https://doi.org/10.1007/s00436-015-4815-2

    Article  PubMed  Google Scholar 

  22. Zhu Q, Hastriter MW, Whiting MF, Dittmar K (2015) Fleas (Siphonaptera) are cretaceous, and evolved with Theria. Mol Phylogenet Evol 90:129–139. https://doi.org/10.1016/j.ympev.2015.04.027

    Article  PubMed  Google Scholar 

  23. Zurita A, Callejon R, Garcia-sanchez AM, Urdapilleta M, Lareschi M, Cutillas C (2019) Origin, evolution, phylogeny and taxonomy of Pulex irritans. Med Vet Entomol 33:296–311. https://doi.org/10.1111/mve.12365

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 81471972; 81271856).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yae Zhao.

Ethics declarations

Conflict of interest

None declared.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 30 kb)

Supplementary file2 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, L., Zhao, Y., Yang, Y. et al. Molecular Identification, Transcriptome Sequencing and Functional Annotation of Pulex irritans. Acta Parasit. 66, 605–614 (2021). https://doi.org/10.1007/s11686-020-00296-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11686-020-00296-x

Keywords

Navigation