Skip to main content

Advertisement

Log in

High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The creep behavior of Fe–17Cr–1.2Cu–0.5Nb–0.01C ferritic heat-resistant stainless steel was investigated at temperatures ranging from 973 to 1123 K and stresses from 15 to 90 MPa. The evolution of precipitates after creep deformation was analyzed by scanning electron microscopy, energy dispersion spectrum, and transmission electron microscopy. The minimum creep rate decreased with the decrease in the applied load and temperature, thereby extending the rupture life. Cu-rich phase and Nb-rich Laves particles were generated in dominant quantities during the creep process, and the co-growth relationship between them could be detected. Creep rupture was featured by ductile fracture with considerable necking. As increasing the temperature and decreasing the stress, the softening of the metal matrix was accelerated, showing more obvious plastic flow. The true stress exponent and activation energy were 4.9 and 375.5 kJ/mol, respectively, indicating that the creep deformation was dominated by the diffusion-controlled dislocation creep mechanism involving precipitate-dislocation interactions. Based on the creep rupture data obtained, the Monkman–Grant relation and Larson-Miller parameter were established, which described the creep rupture life for the studied steel well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Liu, L. Wei, M. Ma, J. Zheng, L. Chen, R.D.K. Misra, J. Mater. Res. Technol. 9, 2127 (2020)

    CAS  Google Scholar 

  2. Y.T. Chiu, C.K. Lin, J.C. Wu, J. Power Sources 196, 2005 (2011)

    CAS  Google Scholar 

  3. Y. Han, J. Sun, Y. Sun, J. Sun, X. Ran, Metals 10, 86 (2020)

    CAS  Google Scholar 

  4. A. Malfliet, W. Van den Broek, F. Chassagne, J.D. Mithieux, B. Blanpain, P. Wollants, J. Alloys Compd. 509, 9583 (2011)

    CAS  Google Scholar 

  5. N. Fujita, K. Ohmura, A. Yamamoto, Mater. Sci. Eng. A 351, 272 (2003)

    Google Scholar 

  6. Y. Kato, M. Ito, Y. Kato, O. Furukimi, Mater. Trans. 51, 1531 (2010)

    CAS  Google Scholar 

  7. A. Miyazaki, K. Takao, O. Furukimi, ISIJ Int. 42, 916 (2002)

    CAS  Google Scholar 

  8. K. Ikeda, N.K.G. Yamoah, W.T. Reynolds Jr., J. Hamada, M. Murayama, Metall. Mater. Trans. A 46, 3460 (2015)

    CAS  Google Scholar 

  9. K. Han, S. Hong, C. Lee, Mater. Sci. Eng. A 546, 97 (2012)

    CAS  Google Scholar 

  10. H.H. Lu, H.K. Guo, W. Liang, J.C. Li, G.W. Zhang, T.T. Li, Mater. Des. 188, 108477 (2020)

    CAS  Google Scholar 

  11. Y. Shao, Y. Li, C. Liu, Z. Yan, Y. Liu, Acta Metall. Sin. 55, 1367 (2019)

    CAS  Google Scholar 

  12. E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, J. Mater. Sci. 45, 5902 (2010)

    CAS  Google Scholar 

  13. J.J. Guo, M.S.N. Sato, J. Chin. Soc. Corros. Prot. 10, 239 (1990)

    Google Scholar 

  14. T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43, 2185 (2001)

    CAS  Google Scholar 

  15. T. Xi, M.B. Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675, 243 (2016)

    CAS  Google Scholar 

  16. A.S. Alomari, N. Kumar, K.L. Murty, Metall. Mater. Trans. A 50, 641 (2019)

    CAS  Google Scholar 

  17. V.T. Ha, W.S. Jung, Mater. Sci. Eng. A 558, 103 (2012)

    CAS  Google Scholar 

  18. H. Ota, T. Nakamura, K. Maruyama, Mater. Sci. Eng. A 586, 133 (2013)

    CAS  Google Scholar 

  19. S. Kobayashi, T. Takeda, T. Oe, J.I. Hamada, N. Kanno, Y. Inoue, K. Nakai, T. Sakamoto, ISIJ Int. 54, 1697 (2014)

    CAS  Google Scholar 

  20. S. Kobayashi, T. Takeda, K. Nakai, J.I. Hamada, N. Kanno, T. Sakamoto, ISIJ Int. 51, 657 (2011)

    CAS  Google Scholar 

  21. T. Zhang, Y. Han, W. Wang, Y. Gao, Y. Song, X. Ran, Acta Metall. Sin. (Engl. Lett.) 33, 1289 (2020)

    Google Scholar 

  22. Q. Xu, T. Cao, F. Ye, F. Xu, H. Li, X. Fang, J. Zhao, Mater. Charact. 139, 311 (2018)

    CAS  Google Scholar 

  23. S. Liu, Q. Wang, Z. Yang, W. Chai, J. Chen, L. Ye, J. Tang, Mater. Charact. 156, 109837 (2019)

    CAS  Google Scholar 

  24. G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, K.S. Lee, Mater. Sci. Eng. A 396, 159 (2005)

    Google Scholar 

  25. H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, X.G. Li, Corros. Sci. 139, 185 (2018)

    CAS  Google Scholar 

  26. B. Xiao, L. Xu, L. Zhao, H. Jing, Y. Han, Z. Tang, Mater. Sci. Eng. A 707, 466 (2017)

    CAS  Google Scholar 

  27. G. Stechauner, E. Kozeschnik, J. Mater. Eng. Perform. 23, 1576 (2014)

    CAS  Google Scholar 

  28. Z. Zhang, Z. Hu, H. Tu, S. Schmauder, G. Wu, Mater. Sci. Eng. A 681, 74 (2017)

    CAS  Google Scholar 

  29. T. Juuti, L. Rovatti, D. Porter, G. Angella, J. Kömi, Mater. Sci. Eng. A 726, 45 (2018)

    CAS  Google Scholar 

  30. G. Chen, J. Pan, J. Liu, J. Wang, X. Bai, J. Zhang, T. Zhang, W. Tang, Trans. Mater. Heat Treat. 34, 103 (2013)

    Google Scholar 

  31. L. Wang, L. Zhu, Q. Wang, Trans. Mater. Heat Treat. 32, 127 (2011)

    Google Scholar 

  32. V. Ganesan, K. Laha, A.K. Bhaduri, T. Indian I. Metals 69, 247 (2016)

    Google Scholar 

  33. Y. Yamamoto, M. Takeyama, Z.P. Lu, C.T. Liu, N.D. Evans, P.J. Maziasz, M.P. Brady, Intermetallics 16, 453 (2008)

    CAS  Google Scholar 

  34. Q. Guo, Y. Li, B. Chen, R. Ding, L. Yu, Y. Liu, Acta Metall. Sin. (2020). https://doi.org/10.11900/0412.1961.2020.00109

    Article  Google Scholar 

  35. W. Wang, P. Han, P. Peng, T. Zhang, Q. Liu, S.N. Yuan, L.Y. Huang, H.L. Yu, K. Qiao, K.S. Wang, Acta Metall. Sin. (Engl. Lett.) 33, 43 (2020)

    CAS  Google Scholar 

  36. N. Nabiran, S. Weber, W. Theisen, Steel Res. Int. 83, 758 (2012)

    CAS  Google Scholar 

  37. T. Chen, C.M. Parish, Y. Yang, L. Tan, Mater. Sci. Eng. A 720, 110 (2018)

    CAS  Google Scholar 

  38. Z. Liu, Z. Liu, X. Wang, Z. Chen, Mater. Charact. 149, 95 (2019)

    CAS  Google Scholar 

  39. H. Yan, H. Bi, X. Li, Z. Xu, Iron Steel 44, 59 (2009)

    CAS  Google Scholar 

  40. D.B. Park, S.M. Hong, K.H. Lee, M.Y. Huh, J.Y. Suh, S.C. Lee, W.S. Jung, Mater. Charact. 93, 52 (2014)

    CAS  Google Scholar 

  41. H. Mughrabi, Dislocations and Properties of Real Materials. The Institute of Metals, London 323, 221 (1985)

    Google Scholar 

  42. K.L. Murty, G. Dentel, J. Britt, Mater. Sci. Eng. A 410, 28 (2005)

    Google Scholar 

  43. N.E. Dowling, Mechanical Behavior of Materials, 3rd edn. (Pearson Education Inc, New Jersey, USA, 2007), pp. 779–797

    Google Scholar 

  44. Y.T. Chiu, C.K. Lin, J. Power Sources 198, 149 (2012)

    CAS  Google Scholar 

  45. V. Dudko, A. Belyakov, D. Molodov, R. Kaibyshev, Metall. Mater. Trans. A 44, 162 (2011)

    Google Scholar 

  46. K. Maruyama, H. GhassemiArmaki, R.P. Chen, K. Yoshimi, M. Yoshizawa, M. Igarashi, Int. J. Pres. Ves. Pip. 87, 276 (2010)

    CAS  Google Scholar 

  47. P. Ou, L. Li, X.F. Xie, J. Sun, Acta Metall. Sin. (Engl. Lett.) 28, 1336 (2015)

    CAS  Google Scholar 

  48. F.C. Monkman, N.J. Grant, Iron Age 56, 593 (1956)

    Google Scholar 

  49. A Czyrska-Filemonowicz, PJ Ennis, A Zielińska-Lipiec Metallurgy on the Turn of the 20th Century 1, 193 (2002)

  50. F.R. Larson, J. Miler, ASME Trans. 74, 765 (1952)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 51604034 and 51974032), the Science and Technology Project of Jilin Education Department in 13th Five–Year (No. JJKH20181008KJ), and the Science and Technology Development Program of Jilin Province (No. 20190302003GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han or Xu Ran.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Sun, J., Sun, J. et al. High-Temperature Creep Behavior and Microstructural Evolution of a Cu-Nb Co-Alloyed Ferritic Heat-Resistant Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 34, 789–801 (2021). https://doi.org/10.1007/s40195-020-01175-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01175-0

Keywords

Navigation