Skip to main content
Log in

Stress analysis for an orthotropic elastic half plane with an oblique edge crack and stress intensity factors

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The main purposes of the present paper are as follows: (1) to analytically derive the general solution (stress functions) for an orthotropic elastic half plane with a crack or a notch; (2) to derive the Riemann–Hilbert equation as the analytical method; (3) to solve the present problem using two methods, one is a Cauchy integral method and other is a Riemann–Hilbert method; and (4) to derive the general expressions of the stress intensity factor (SIF) for a crack problem. The stress functions obtained by the Riemann–Hilbert equation are compared with those obtained by Cauchy integral method. Then, it is confirmed that the same stress functions can be obtained. The stress functions are expressed by any elastic constants. Therefore, Mode I and II SIFs can be calculated for any elastic constants. Some examples are shown. It is stated from the results of the examples that the negative Mode I SIFs exist for certain oblique edge crack angles and elastic constants. Because the derived stress functions are expressed using a mapping function, other geometrical shapes can be analyzed by changing the mapping function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lekhnitskii, G.C.: Theory of an anisotropic elastic body. Holden Day, San Francisco (1963)

    MATH  Google Scholar 

  2. Lekhnitskii, G.C.: Anisotropic plates. Gorden and Breach Sciences, New York (1968)

    Google Scholar 

  3. Hasebe, N.: Analysis of an orthotropic elastic plane problem of a half pane with an edge crack using a mapping function. Acta Mech. 230, 2813–2826 (2019)

    Article  MathSciNet  Google Scholar 

  4. Daoust, J., Hoa, S.V.: An analytical solution for anisotropic plates containing triangular holes. Compos. Struct. 19, 107–130 (1991)

    Article  Google Scholar 

  5. Hwu, C.: Polygonal holes in anisotropic media. Int. J. Solids Struct. 29(19), 2369–2384 (1992)

    Article  Google Scholar 

  6. Ukadgaonker, V.G., Rao, D.K.N.: Stress distribution around triangular holes in anisotropic plates. Compos. Struct. 45, 171–183 (1999)

    Article  Google Scholar 

  7. Ukadgaonker, V.G., Kakhandki, V.: Stress analysis for an orthotropic plate with an irregular shaped hole for different in-plane loading conditions—part I. Compos. Struct. 70, 255–274 (2005)

    Article  Google Scholar 

  8. Zappalorto, M., Carraro, P.A.: Stress distributions for blunt cracks and radiuses slits in anisotropic plates under in-plane loadings. Int. J. Solids Struct. 56–57, 136–141. M.P. (2015)

  9. Hwu, C., Hsu, C.L., Chen, W.R.: Corrective evaluation of multi-valued complex functions for anisotropic elasticity. Math. Mech. Solids 22(10), 2040–2062 (2017)

    Article  MathSciNet  Google Scholar 

  10. Zappalorto, M., Carraro, P.A.: Two-dimensional stress distributions in tensioned orthotropic plates weakened by blunt V-shaped notches. Fatigue Fract. Eng. Mater. Struct. 40, 804–819 (2017)

    Article  Google Scholar 

  11. Zappalorto, M.: On the stress state in rectilinear anisotropic thick plates with blunt cracks. Fatigue Fract. Eng. Mater. Struct. 40, 103–119 (2017)

    Article  Google Scholar 

  12. Zappalorto, M.: Mode I Generalised Stress Intensity Factors for rounded notches in orthotropic plates. Theor. Appl. Fract. Mech. 101, 356–364 (2019)

    Article  Google Scholar 

  13. Hasebe, N., Inohara, S.: Stress analysis of a semi-Infinite plate with an oblique edge crack. Archive Appl. Mech. 49, 51–62 (1980)

    MATH  Google Scholar 

  14. Hasebe, N., Sato, T.: Stress analysis of quasi-orthotropic elastic plane. Int. J. Solids Struct. 50, 209–216 (2013)

    Article  Google Scholar 

  15. Savin, G.N.: Stress concentration around holes. Pergamon Press, London (1961)

    MATH  Google Scholar 

  16. Suo, Z.: Singularities interface and cracks in dissimilar anisotropic media. In: Proceedings of the Royal Society of London. Ser. A Math. Phys. Sci. 427–1873, 331–358 (1990)

  17. Muskhelishvili, N.I.: Some basic problems of the mathematical theory of elasticity. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  18. Hasebe, N.: Stress concentration and stress analyses for certain orthotropic plates. Trans. Civ. Eng. Jpn. Soc. Civ. Eng. 233, 1–11 (1975) (in Japanese)

  19. Hasebe, N., Iida, J.: A crack originating from a triangular notch on a rim of a semi-infinite plate. Eng. Fracture Mech. 10–4, 773–782 (1978)

    Google Scholar 

  20. Sih, G.C.: Cracks in materials possessing homogeneous anisotropy. In: Sih GC (ed), Chap. 1 in Plates and Shells with cracks. Leyden, Netherlands (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norio Hasebe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

The method to calculate stress intensity factors (SIFs) of Modes I and II is stated. The crack in the physical plane shown in Fig. 4a is first considered. The small distance “r” on the extended crack line at the crack tip is considered. The crack on the x-axis must be considered. The crack in the physical plane is shown in Fig. 4b. The crack in the analytical plane is shown in Fig. 5b.

The coordinate \(\sigma_{10}\) at the crack tip C1 on the unit circle on the \(z_{1}\hbox{-}\)plane is

$$\sigma_{10} = {{(1 - 2q_{1} + i)} \mathord{\left/ {\vphantom {{(1 - 2q_{1} + i)} {(1 - 2q_{1} - i)}}} \right. \kern-0pt} {(1 - 2q_{1} - i)}}$$
(66)

which is derived from the first derivative

$$\omega^{\prime}_{1} (\sigma_{10} ) = 0.$$
(67)

The crack surfaces are rotated on the x1-axis (see Fig. 5), and the following equation using Eqs. (45), (53) and (66) is derived:

$$k_{1} = \mathop {\lim }\limits_{\begin{subarray}{l} r \to 0 \\ \theta = 0 \end{subarray} } \sqrt {2r} \sigma_{y} = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \sqrt {2\left\{ {\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )} \right\}e^{{iq_{1} \pi }} } 2\text{Re} \left[ {\frac{{\varPhi^{\prime}_{0} (\zeta_{1} )}}{{\omega^{\prime}_{1} (\zeta_{1} )}} + \frac{{\varPsi^{\prime}_{0} (\zeta_{2} )}}{{\omega^{\prime}_{2} (\zeta_{2} )}}} \right].$$
(68)

The first term in Re[] of the above equation is considered:

$$\begin{aligned} & \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \sqrt {2\left\{ {\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )} \right\}} \frac{{\varPhi_{0}^{{\prime }} (\zeta_{1} )}}{{\omega_{1}^{{\prime }} (\zeta_{1} )}} = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \left[ {2\frac{{\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )}}{{\left\{ {\omega_{1}^{{\prime }} (\zeta_{1} )} \right\}^{2} }}} \right]^{1/2} \varPhi_{0}^{{\prime }} (\zeta_{1} ) \\ & \quad = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \left[ {2\frac{{\omega_{1}^{{\prime }} (\zeta_{1} )}}{{2\omega_{1}^{{\prime }} (\zeta_{1} )\omega_{1}^{{\prime \prime }} (\zeta_{1} )}}} \right]^{1/2} \varPhi_{0}^{{\prime }} (\zeta_{1} ) = \left[ {\frac{1}{{\omega_{1}^{{\prime \prime }} (\sigma_{10} )}}} \right]^{1/2} \varPhi_{0}^{{\prime }} (\sigma_{10} ) = \frac{{\varPhi_{0}^{{\prime }} (\sigma_{10} )}}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }}, \\ \end{aligned}$$
(69)

and the second term (see Eq. (52))

$$\begin{aligned} & \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \sqrt {2\left\{ {\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )} \right\}} \frac{{\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}}}{{\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\overline{{\omega_{1}^{{\prime }} (\zeta_{1} )}} \frac{{\bar{\zeta }_{1} }}{{\zeta_{1} }}}} \\ & \quad = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \left[ {2\frac{{\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )}}{{\left\{ {\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\overline{{\omega_{1}^{{\prime }} (\zeta_{1} )}} \frac{{\bar{\zeta }_{1} }}{{\zeta_{1} }}} \right\}^{2} }}} \right]^{1/2} \left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} \\ & \quad = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \left[ {2\frac{{\omega_{1}^{{\prime }} (\zeta_{1} )}}{{2\left\{ {\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\overline{{\omega^{\prime}_{1} (\zeta_{1} )}} \frac{{\bar{\zeta }_{1} }}{{\zeta_{1} }}} \right\}\left\{ {\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime \prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\frac{{\overline{{\partial \omega_{1}^{{\prime }} (\zeta_{1} )}} }}{{\partial \bar{\zeta }_{1} }}\frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}\frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}} \right\}}}} \right]^{1/2} \left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} \\ & \quad = \left[ {\frac{{\omega_{1}^{{\prime \prime }} (\zeta_{1} )}}{{\left\{ {\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime \prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\frac{{\overline{{\partial \omega_{1}^{{\prime }} (\zeta_{1} )}} }}{{\partial \bar{\zeta }_{1} }}\frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}\frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}} \right\}^{2} }}} \right]_{{\zeta_{1} = \sigma_{10} }}^{1/2} \left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} \\ & \quad = \frac{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} \left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} }}{{\left\{ {\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\omega_{1}^{{\prime \prime }} (\zeta_{1} ) + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\overline{{\omega_{1}^{{\prime \prime }} (\zeta_{1} )}} \frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}\frac{{\partial \bar{\zeta }_{1} }}{{\partial \zeta_{1} }}} \right\}_{{\zeta_{1} = \sigma_{10} }} }} \\ & \quad = \frac{{\left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} }}{{\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\frac{{\overline{{\omega_{1}^{{\prime \prime }} (\sigma_{10} )}} }}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }}\left( { - \frac{{\left| {\sigma_{10} } \right|^{2} }}{{\sigma_{10}^{2} }}} \right)^{2} }}. \\ \end{aligned}$$
(70)

Therefore,

$$k_{1} = 2\sqrt {e^{{iq_{1} \pi }} } \text{Re} \left[ {\frac{{\varPhi^{\prime}_{0} (\sigma_{10} )}}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }} + \frac{{\left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} }}{{\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\frac{{\overline{{\omega_{1}^{{\prime \prime }} (\sigma_{10} )}} }}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }}\left( { - \frac{{\left| {\sigma_{10} } \right|^{2} }}{{\sigma_{10}^{2} }}} \right)^{2} }}} \right].$$
(71)

Similarly, using \(\tau_{xy}\) in Eq. (63), the equation for k2 is derived:

$$\begin{aligned} k_{2} & = \mathop {\lim }\limits_{\begin{subarray}{l} r \to 0 \\ \theta = 0 \end{subarray} } \sqrt {2r} \tau_{xy} = \mathop {\lim }\limits_{\begin{subarray}{l} \zeta_{1} \to \sigma_{10} \\ \theta = 0 \end{subarray} } \sqrt {2\left\{ {\omega_{1} (\zeta_{1} ) - \omega_{1} (\sigma_{10} )} \right\}e^{{iq_{1} \pi }} } ( - 2)\text{Re} \left[ {s_{1} \frac{{\varPhi^{\prime}_{0} (\zeta_{1} )}}{{\omega^{\prime}_{1} (\zeta_{1} )}} + s_{2} \frac{{\varPsi^{\prime}_{0} (\zeta_{2} )}}{{\omega^{\prime}_{2} (\zeta_{2} )}}} \right] \\ & = - 2\sqrt {e^{{iq_{1} \pi }} } \text{Re} \left[ {s_{1} \frac{{\varPhi_{0}^{{\prime }} (\sigma_{10} )}}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }} + s_{2} \frac{{\left[ {\frac{{\partial \varPsi_{0} (\zeta_{2} )}}{{\partial \zeta_{1} }}} \right]_{{\zeta_{1} = \sigma_{10} }} }}{{\frac{{s_{2} - \bar{s}_{1} }}{{s_{1} - \bar{s}_{1} }}\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} + \frac{{s_{1} - s_{2} }}{{s_{1} - \bar{s}_{1} }}\frac{{\overline{{\omega_{1}^{{\prime \prime }} (\sigma_{10} )}} }}{{\sqrt {\omega_{1}^{{\prime \prime }} (\sigma_{10} )} }}\left( { - \frac{{\left| {\sigma_{10} } \right|^{2} }}{{\sigma_{10}^{2} }}} \right)^{2} }}} \right]. \\ \end{aligned}$$
(72)

The values k1 and k2 are calculated by Eqs. (71) and (72).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasebe, N. Stress analysis for an orthotropic elastic half plane with an oblique edge crack and stress intensity factors. Acta Mech 232, 967–982 (2021). https://doi.org/10.1007/s00707-020-02894-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02894-2

Navigation