Skip to main content
Log in

Modelling three-dimensional stress-dependent failure of hard rocks

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Hard rocks exhibit three-dimensional (3D) stress-dependent failure under true triaxial compression. The deformability and strength of hard rocks under true triaxial compression differ from those under traditional loading schemes of conventional triaxial compression tests. For the purpose of characterizing these distinctive features, including 3D stress-dependent brittleness and the failure process and 3D stress-induced anisotropy, a new model suited for hard rocks was proposed in this paper. In the new model, the 3D stress-dependent brittleness under true triaxial compression tests was reflected by a determination method of the internal variable considering the influences of both \({\sigma }_{2}\) and \({\sigma }_{3}\). For the failure process, different evolutions in cohesion and the friction angle were applied to realize different failure processes under different 3D stresses, and their 3D stress dependency was identified by the 3D brittleness index defined in this paper. The 3D stress-induced anisotropy involved in the deformation and failure of hard rocks under true triaxial compression was described via the deformation modulus evolution. The formulation for the stress-induced stiffness matrix and the model framework is fully thermodynamically consistent. The model was implemented in the 3D elasto-plastic cellular automaton system, and good agreement was achieved between the numerical simulation and experimental results, indicating that the new model can be applied to describe the failure behaviours of hard rocks under 3D stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Abe S, Place D, Mora P (2004) A parallel implementation of the lattice solid model for the simulation of rock mechanics and earthquake dynamics. Pure Appl Geophys 161(11–12):2265–2277

    Google Scholar 

  2. Adachi T, Oka F (1995) An elasto-plastic constitutive model for soft rock with strain softening. Int J Numer Anal Meth Geomech 19(4):233–247

    Article  MATH  Google Scholar 

  3. Adhikary DP, Dyskin AV (1998) A continuum model of layered rock masses with non-associative joint plasticity. Int J Numer Anal Methods Geomechan 22(4):245–261

    Article  MATH  Google Scholar 

  4. Adhikary DP, Guo H (2002) An orthotropic Cosserat elasto-plastic model for layered rocks. Rock Mech Rock Eng 35(3):161–170

    Article  Google Scholar 

  5. Asadollahi P, Tonon F (2010) Constitutive model for rock fractures: revisiting Barton’s empirical model. Eng Geol 113(1–4):11–32

    Article  Google Scholar 

  6. Baud P, Reuschlé T, Charlez P (1996) An improved wing crack model for the deformation and failure of rock in compression. Int J Rock Mech Min Sci Geomech Abstracts 33(5):539–542

    Article  Google Scholar 

  7. Bažant ZP, Oh BH (1985) Microplane model for progressive fracture of concrete and rock. J Eng Mech 111(4):559–582

    Google Scholar 

  8. Blair SC, Cook NGW (1998) Analysis of compressive fracture in rock using statistical techniques: part I. A non-linear rule-based model. Int J Rock Mech Min Sci 35(7):837–848

    Article  Google Scholar 

  9. Brace WF, Paulding JBW, Scholz CH (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953

    Article  Google Scholar 

  10. Bruno MS, Nelson RB (1991) Microstructural analysis of the inelastic behavior of sedimentary rock. Mech Mater 12(2):95–118

    Article  Google Scholar 

  11. Byerlee JD (1968) Brittle–ductile transition in rocks. J Geophys Res 73:4741–4750

    Article  Google Scholar 

  12. Cai M (2008) Influence of intermediate principal stress on rock fracturing and strength near excavation boundaries—insight from numerical modeling. Int J Rock Mech Min Sci 45(5):763–772

    Article  Google Scholar 

  13. Cao W, Li X, Zhao H (2007) Damage constitutive model for strain-softening rock based on normal distribution and its parameter determination. J Central South Univ Technol 14(5):719

    Article  Google Scholar 

  14. Carol I, Rizzi E, Willam K (2001) On the formulation of anisotropic elastic degradation I Theory based on a pseudo-logarithmic damage tensor rate. Int J Solids Struct 38(4):491–518

    Article  MATH  Google Scholar 

  15. Cherry JT, Schock RN, Sweet J (1975) A theoretical model of the dilatant behavior of a brittle rock. Pure Appl Geophys 113(1):183–196

    Article  Google Scholar 

  16. Cho NA, Martin CD, Sego DC (2007) A clumped particle model for rock. Int J Rock Mech Min Sci 44(7):997–1010

    Article  Google Scholar 

  17. Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39(6):695–729

    Article  Google Scholar 

  18. Costin LS (1983) A microcrack model for the deformation and failure of brittle rock. J Geophys Res Solid Earth 88(B11):9485–9492

    Article  Google Scholar 

  19. Desai CS, Salami MR (1987) A constitutive model and associated testing for soft rock. Int J Rock Mech Min Sci Geomech Abstracts 24(5):299–307

    Article  Google Scholar 

  20. Detournay E (1986) Elastoplastic model of a deep tunnel for a rock with variable dilatancy. Rock Mech Rock Eng 19(2):99–108

    Article  Google Scholar 

  21. Diederichs MS (2007) The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44:1082–1116

    Article  Google Scholar 

  22. Dragon A, Mroz Z (1979) A continuum model for plastic-brittle behaviour of rock and concrete. Int J Eng Sci 17(2):121–137

    Article  MATH  Google Scholar 

  23. Duan K, Kwok CY, Ma X (2017) DEM simulations of sandstone under true triaxial compressive tests. Acta Geotech 12(3):495–510

    Article  Google Scholar 

  24. Dyskin AV, Germanovich LN (1993) A model of crack growth in microcracked rock. Int J Rock Mech Min Sci Geomech Abstracts 30(7):813–820

    Article  Google Scholar 

  25. Eberhardt E, Stead D, Coggan JS (2004) Numerical analysis of initiation and progressive failure in natural rock slopes—the 1991 Randa rockslide. Int J Rock Mech Min Sci 41(1):69–87

    Article  Google Scholar 

  26. Edelbro C (2009) Numerical modelling of observed fallouts in hard rock masses using an instantaneous cohesion-softening friction-hardening model. Tunn Undergr Space Technol 24(4):398–409

    Article  Google Scholar 

  27. Fang Z, Harrison JP (2002) Application of a local degradation model to the analysis of brittle fracture of laboratory scale rock specimens under triaxial conditions. Int J Rock Mech Min Sci 39(4):459–476

    Article  Google Scholar 

  28. Feng XT, Kong R, Yang C, Zhang X, Wang Z, Han Q, Wang G (2020) A three-dimensional failure criterion for hard rocks under true triaxial compression. Rock Mech Rock Eng 53(1):103–111

    Article  Google Scholar 

  29. Feng XT, Kong R, Zhang X, Yang C (2019) Experimental study of failure differences in hard rock under true triaxial compression. Rock Mech Rock Eng 52:1–14

    Article  Google Scholar 

  30. Feng XT, Pan PZ, Zhou H (2006) Simulation of the rock microfracturing process under uniaxial compression using an elasto-plastic cellular automaton. Int J Rock Mech Min Sci 43(7):1091–1108

    Article  Google Scholar 

  31. Feng XT, Pei S, Jiang Q, Zhou Y, Li S, Yao Z (2017) Deep fracturing of the hard rock surrounding a large underground cavern subjected to high geostress: in situ observation and mechanism analysis. Rock Mech Rock Eng 50:2155–2175

    Article  Google Scholar 

  32. Feng XT, Zhang X, Kong R, Wang G (2016) A novel Mogi type true triaxial testing apparatus and its use to obtain complete stress–strain curves of hard rocks. Rock Mech Rock Eng 49:1649–1662

    Article  Google Scholar 

  33. Feng XT, Zhao J, Wang ZF, Yang CX, Han Q, Zheng Z (2020) Effect of high differential stress and mineral properties on deformation and failure mechanism of hard rocks. Can Geotech J (in progressing).

  34. Gao Y, Feng XT, Zhang X (2018) Characteristic stress levels and brittle fracturing of hard rocks subjected to true triaxial compression with low minimum principal stress. Rock Mech Rock Eng 51(12):3681–3697

    Article  Google Scholar 

  35. Gao Y, Feng XT, Zhang X, Zhou Y, Zhang Y (2020) Generalized crack damage stress thresholds of hard rocks under true triaxial compression. Acta Geotech 15(3):565–580

    Article  Google Scholar 

  36. Golshani A, Okui Y, Oda M, Takemura T (2006) A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech Mater 38(4):287–303

    Article  Google Scholar 

  37. Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Fdns Div ASCE 94(SM3):637–659

    Article  Google Scholar 

  38. Grgic D (2016) Constitutive modelling of the elastic–plastic, viscoplastic and damage behaviour of hard porous rocks within the unified theory of inelastic flow. Acta Geotech 11(1):95–126

    Article  Google Scholar 

  39. Griffith AA (1921) The phenomena of rupture and flow in solids. Philos Trans R Soc Lond Ser A Contain Pap Math Phys Char 221:163–198

    MATH  Google Scholar 

  40. Hajiabdolmajid V, Kaiser P (2003) Brittleness of rock and stability assessment in hard rock tunneling. Tunnell Undergr Space Technol 18(1):35–48

    Article  Google Scholar 

  41. Hajiabdolmajid V, Kaiser PK, Martin CD (2002) Modelling brittle failure of rock. Int J Rock Mech Min Sci 39(6):731–741

    Article  Google Scholar 

  42. Hansen NR, Schreyer HL (1994) A thermodynamically consistent framework for theories of elastoplasticity coupled with damage. Int J Solids Struct 31(3):359–389

    Article  MATH  Google Scholar 

  43. Hill R (1998) The mathematical theory of plasticity, vol 11. Oxford University Press, Oxford

    MATH  Google Scholar 

  44. Holcomb DJ (1978) A quantitative model of dilatancy in dry rock and its application to Westerly granite. J Geophys Res Solid Earth 83(B10):4941–4950

    Article  Google Scholar 

  45. Horii H, Nemat-Nasser S (1986) Brittle failure in compression: splitting faulting and brittle–ductile transition. Philos Trans R Soc Lond Ser A Math Phys Sci 319:337–374

    MATH  Google Scholar 

  46. Huang C, Subhash G, Vitton SJ (2002) A dynamic damage growth model for uniaxial compressive response of rock aggregates. Mech Mater 34(5):267–277

    Article  Google Scholar 

  47. Ingraham MD, Kathleen AI, David JH (2013) Use of acoustic emissions to investigate localization in high-porosity sandstone subjected to true triaxial stresses. Acta Geotech 8(6):645–663

    Article  Google Scholar 

  48. Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, New York

    Google Scholar 

  49. Ji W, Pan PZ, Lin Q, Feng XT, Du MP (2016) Do disk-type specimens generate a mode II fracture without confinement. Int J Rock Mech Min Sci 87(9):48–54

    Article  Google Scholar 

  50. Jiang M, Chen H, Crosta GB (2015) Numerical modeling of rock mechanical behavior and fracture propagation by a new bond contact model. Int J Rock Mech Min Sci 78:175–189

    Article  Google Scholar 

  51. Jiao Y, Zhang X, Zhao J (2011) Two-dimensional DDA contact constitutive model for simulating rock fragmentation. J Eng Mech 138(2):199–209

    Google Scholar 

  52. Johnson GR, Holmquist TJ (1994) An improved computational constitutive model for brittle materials. AIP Conf Proc 309(1):981–984

    Article  Google Scholar 

  53. Kachanov ML (1982) A microcrack model of rock inelasticity part I: frictional sliding on microcracks. Mech Mater 1(1):19–27

    Article  Google Scholar 

  54. Kana DD, Fox DJ, Hsiung SM (1996) Interlock/friction model for dynamic shear response in natural jointed rock. Int J Rock Mech Min Sci Geomech Abstracts 33(4):371–386

    Article  Google Scholar 

  55. Kemeny JM (1991) A model for non-linear rock deformation under compression due to sub-critical crack growth. Int J Rock Mech Min Sci Geomech Abstracts 28(6):459–467

    Article  Google Scholar 

  56. Lade PV, Kim MK (1995) Single hardening constitutive model for soil, rock and concrete. Int J Solids Struct 32(14):1963–1978

    Article  MATH  Google Scholar 

  57. Li T, Ma C, Zhu M, Meng L, Chen G (2017) Geomechanical types and mechanical analyses of rockbursts. Eng Geol 222:72–83

    Article  Google Scholar 

  58. Liu G, Feng XT, Jiang Q, Yao Z, Li S (2017) In situ observation of spalling process of intact rock mass at large cavern excavation. Eng Geol 226:52–59

    Article  Google Scholar 

  59. Liu X, Ning J, Tan Y, Gu Q (2016) Damage constitutive model based on energy dissipation for intact rock subjected to cyclic loading. Int J Rock Mech Min Sci 85:27–32

    Article  Google Scholar 

  60. Martin CD, Read RS, Martino JB (1997) Observations of brittle failure around a circular test tunnel. Int J Rock Mech Min Sci 34:1065–1073

    Article  Google Scholar 

  61. Miao S, Pan PZ, Wu Z, Li S, Zhao S (2018) Fracture analysis of sandstone with a single filled flaw under uniaxial compression. Eng Fract Mech 204:319–343

    Article  Google Scholar 

  62. Mogi K (1972) Effect of the triaxial stress system on fracture and flow of rocks. Phys Earth Planet Inter 5:318–324

    Article  Google Scholar 

  63. Mogi K (2006) Experimental rock mechanics. CRC Press, Boca Raton

    Book  Google Scholar 

  64. Nemat-Nasser S, Horii H (1982) Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst. Journal of Geophysical Research Solid Earth 87(B8):6805–6821

    Article  Google Scholar 

  65. Ortlepp WD, Stacey TR (1994) Rockburst mechanisms in tunnels and shafts. Tunnell Undergr Space Technol 9:59–65

    Article  Google Scholar 

  66. Pan PZ, Feng XT, Hudson JA (2009) Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata. Int J Rock Mech Min Sci 46(4):674–685

    Article  Google Scholar 

  67. Pan PZ, Feng XT, Hudson JA (2012) The influence of the intermediate principal stress on rock failure behaviour: a numerical study. Eng Geol 124:109–118

    Article  Google Scholar 

  68. Pan PZ, Feng XT, Zhou H (2012) Development and applications of the elasto-plastic cellular automaton. Acta Mech Solid Sin 25(2):126–143

    Article  Google Scholar 

  69. Paul B (1961) A modification of the Coulomb–Mohr theory of fracture. J Appl Mech 28(2):259–268

    Article  MathSciNet  Google Scholar 

  70. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8):1329–1364

    Article  Google Scholar 

  71. Shao J, Chau KT, Feng XT (2006) Modeling of anisotropic damage and creep deformation in brittle rocks. Int J Rock Mech Min Sci 43(4):582–592

    Article  Google Scholar 

  72. Shao J, Henry JP (1991) Development of an elastoplastic model for porous rock. Int J Plast 7(1–2):1–13

    Article  Google Scholar 

  73. Unteregger D, Fuchs B, Hofstetter G (2015) A damage plasticity model for different types of intact rock. Int J Rock Mech Min Sci 80:402–411

    Article  Google Scholar 

  74. Valanis KC (1990) A theory of damage in brittle materials. Eng Fract Mech 36(3):403–416

    Article  Google Scholar 

  75. Vermeer PA, De Borst R (1984) Non-associated plasticity for soils, concrete and rock. HERON 29:1–64

    Google Scholar 

  76. Wang Q, Lade PV (2001) Shear banding in true triaxial tests and its effect on failure in sand. J Eng Mech 127:754–761

    Google Scholar 

  77. Wong TF, Baud P (2012) The brittle–ductile transition in porous rock: a review. J Struct Geol 44:25–53

    Article  Google Scholar 

  78. Wong TF, Fredrich JT, Gwanmesia GD (1989) Crack aperture statistics and pore space fractal geometry of Westerly granite and Rutland quartzite: implications for an elastic contact model of rock compressibility. J Geophys Res Solid Earth 94(B8):10267–10278

    Article  Google Scholar 

  79. Yoshida H, Horii H (2004) Micromechanics-based continuum model for a jointed rock mass and excavation analyses of a large-scale cavern. Int J Rock Mech Min Sci 41(1):119–145

    Article  Google Scholar 

  80. Zhang Y, Feng XT, Yang C (2019) Fracturing evolution analysis of Beishan granite under true triaxial compression based on acoustic emission and strain energy. Int J Rock Mech Min Sci 117:150–161

    Article  Google Scholar 

  81. Zhang C, Feng XT, Zhou H, Qiu S, Wu W (2012) Case histories of four extremely intense rockbursts in deep tunnels. Rock Mech Rock Eng 45:275–288

    Article  Google Scholar 

  82. Zhao Y (1998) Crack pattern evolution and a fractal damage constitutive model for rock. Int J Rock Mech Min Sci 35(3):349–366

    Article  Google Scholar 

  83. Zhao X, Cai M (2010) A mobilized dilation angle model for rocks. Int J Rock Mech Min Sci 47(3):368–384

    Article  Google Scholar 

  84. Zhao J, Feng XT, Zhang X, Zhang Y, Zhou Y, Yang C (2018) Brittle–ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng Geol 232:160–170

    Article  Google Scholar 

  85. Zhou Y, Feng XT, Xu D, Fan Q (2017) An enhanced equivalent continuum model for layered rock mass incorporating bedding structure and stress dependence. Int J Rock Mech Min Sci 97:75–98

    Article  Google Scholar 

  86. Zhou H, Yang F, Zhang C, Xu R, Zhang K (2012) An elastoplastic coupling mechanical model for marble considering confining pressure effect. Chin J Rock Mech Eng 12:781–792

    Google Scholar 

  87. Zhu Q, Shao J (2015) A refined micromechanical damage–friction model with strength prediction for rock-like materials under compression. Int J Solids Struct 60:75–83

    Article  Google Scholar 

  88. Zhu W, Tang C (2004) Micromechanical model for simulating the fracture process of rock. Rock Mech Rock Eng 37(1):25–56

    Article  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge the financial support from the National Natural Science Foundation of China under Grant Nos. 51621006 and 51839003. We would like to thank the Key Laboratory of the Ministry of Education on Safe Mining of Deep Metal Mines, Northeastern University, for giving us the opportunities to conduct the experimental and simulation tests. Appreciation is extended to all the teachers and staff. In addition, we are grateful to Mr. Yaohui Gao, Mr. Yan Zhang, Mr. Qiang Han, Mr. Hong Xu and other members of the Mechanical Response of Deep Hard Rock (MRDHR) group for their generous assistance with the experimental operation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-Ting Feng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest as far as the authors are concerned.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Thermodynamic aspects of the model framework and stress-induced anisotropy formulation

Appendix: Thermodynamic aspects of the model framework and stress-induced anisotropy formulation

The constitutive equations have been constructed without details of thermodynamic aspects in this paper. Therefore, it is useful to check the satisfaction of the proposed model and stress-induced anisotropic method, as the internal variable determination and several evolution laws are simply postulated instead of being derived from the dissipation potential.

The thermodynamic formalism considered here is mainly based on the following hypotheses:

  • Small transformation hypothesis

    The non-symmetrical part of the displacement gradient is not considered, indicating the rotation is ignored.

  • Strain partition hypothesis

    The total strain contains the reversible part (elastic strain) and the irreversible part (plastic strain in this paper), which means:

    $${\varvec{\varepsilon}}={{\varvec{\varepsilon}}}^{e}+{{\varvec{\varepsilon}}}^{p}$$
    (30)
  • Isothermal condition

    Dissipation is purely mechanical without any thermal dissipation.

The general Clausius–Duhem inequality is written as follows:

$$\mathcal{L}={\varvec{\sigma}}:\dot{{\varvec{\varepsilon}}}-\rho \left(\dot{\boldsymbol{\Psi }}+s\dot{T}\right)-\frac{1}{T}{\varvec{q}}\Delta T\ge 0$$
(31)

where \({\varvec{\sigma}}\) and \({\varvec{\varepsilon}}\) are stress and strain tensor. \(\rho \) represents the density, and \(\boldsymbol{\Psi }\) is the free energy. \(s\), \(T\) and \({\varvec{q}}\) are specific entropy, temperature and heat flux, respectively. Considering the isothermal condition, the dissipation inequality condition can be simplified as follows:

$$\mathcal{L}={\varvec{\sigma}}:\dot{{\varvec{\varepsilon}}}-\rho \dot{\boldsymbol{\Psi }}\ge 0$$
(32)

In our model, the Helmholtz free energy was applied as the potential. Here, the most natural choice for specific free energy is listed as follows:

$$\rho \boldsymbol{\Psi }=\frac{1}{2}\left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right):{\varvec{E}}\left({\varvec{D}}\right):\left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right)$$
(33)

Then, the following equations are acquired:

$${\varvec{\rho}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{\partial{\varvec{\varepsilon}}}=\boldsymbol{ }{\varvec{E}}\left({\varvec{D}}\right): \left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right)={\varvec{\sigma}}$$
(34)
$${\varvec{\rho}}\frac{\partial \boldsymbol{\Psi }}{\partial {{\varvec{\varepsilon}}}^{p}}=\boldsymbol{ }-{\varvec{E}}\left({\varvec{D}}\right): \left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right)=-{\varvec{\sigma}}$$
(35)

The inequality can be calculated as:

$${\varvec{\mathcal{L}}}=\left({\varvec{\sigma}}-{\varvec{\rho}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{{\varvec{\partial}}{\varvec{\varepsilon}}}\right) :{\dot{{\varvec{\varepsilon}}}}-{\varvec{\rho}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{\partial {{\varvec{\varepsilon}}}^{p}} :{\dot{{{\varvec{\varepsilon}}}^{p}}-{\varvec{\rho}}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{\partial {\varvec{D}}}:{\dot{{\varvec{D}}}}={\varvec{\sigma}} :{\dot{{{\varvec{\varepsilon}}}^{p}}-{\varvec{\rho}}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{{\varvec{\partial}} {\varvec{D}}} :{\dot{{\varvec{D}}}}={\varvec{\sigma}}:{\dot{{{\varvec{\varepsilon}}}^{p}}}+{\varvec{Y}} :{\dot{{\varvec{D}}}}\ge 0$$
(36)

Equation 36 means that the dissipative thermodynamic force conjugate to the plastic strain is the nominal stress \({\varvec{\sigma}}\). The damage conjugate force is defined as follows:

$${\varvec{Y}}=-{\varvec{\rho}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{{\varvec{\partial}} {\varvec{D}}}$$
(37)

1.1 Stress-induced anisotropic damage dissipation

The damage conjugate force can be calculated as follows:

$${\varvec{Y}}=-{\varvec{\rho}}\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{\partial {\varvec{E}}\left({\varvec{D}}\right)}:\frac{{\varvec{\partial}} {\varvec{E}}\left({\varvec{D}}\right)}{\partial {\varvec{D}}}$$
(38)

According to Eq. 33, \(\frac{{\varvec{\partial}} \boldsymbol{\Psi }}{\partial {\varvec{E}}\left({\varvec{D}}\right)}\) will never be negative as the total strain \({\varvec{\varepsilon}}\) cannot be smaller than the plastic strain \({{\varvec{\varepsilon}}}^{p}\). It is equal to the partial derivative of the specific free energy (\(\frac{1}{2}\left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right):{{\varvec{E}}}_{0}:\left({\varvec{\varepsilon}}-{{\varvec{\varepsilon}}}^{p}\right)\)) for the undamaged material under the same elastic strain. Now, only \(\frac{{\varvec{\partial}} {\varvec{E}}\left({\varvec{D}}\right)}{{\varvec{\partial}} {\varvec{D}}}\) is considered.

Considering the stress-induced anisotropic matrix in the damage principal axes space, it can be expressed as [14]:

$${E}_{ijkl}={\alpha }_{ijpq}{E}_{pqrs}^{0}{\alpha }_{klrs}$$
(39)

where \({E}_{pqrs}^{0}\) is the component of the initial stiffness matrix. For the definition of the integrity in this paper, the \(\boldsymbol{\alpha }\) matrix can be expressed as [14]:

$${\boldsymbol{\alpha }}=\left[\begin{array}{cccccc}{\beta }_{(1)}& 0& 0& 0& 0& 0\\ 0& {\beta }_{(2)}& 0& 0& 0& 0\\ 0& 0& {\beta }_{(3)}& 0& 0& 0\\ 0& 0& 0& \sqrt{{\beta }_{(1)}{\beta }_{(2)}}& 0& 0\\ 0& 0& 0& 0& \sqrt{{\beta }_{(2)}{\beta }_{(3)}}& 0\\ 0& 0& 0& 0& 0& \sqrt{{\beta }_{(3)}{\beta }_{(1)}}\end{array}\right]$$
(40)

Consider the stiffness matrix as a function shown below:

$${\varvec{E}}\left({\varvec{D}}\right)=f({{\varvec{E}}}_{0},{\varvec{\beta}})$$
(41)

Hence, \(\frac{\partial {\varvec{E}}\left({\varvec{D}}\right)}{\partial {\varvec{D}}}\) can be expressed as:

$$\frac{\partial {\varvec{E}}\left({\varvec{D}}\right)}{\partial {\varvec{D}}}=\frac{\partial {\varvec{E}}\left({\varvec{D}}\right)}{\partial {{\varvec{E}}}_{0}}\frac{\partial {{\varvec{E}}}_{0}}{\partial {\varvec{D}}}+\frac{\partial {\varvec{E}}\left({\varvec{D}}\right)}{\partial \boldsymbol{\alpha }}\frac{\partial \boldsymbol{\alpha }}{\partial{\varvec{\beta}}}\frac{\partial{\varvec{\beta}}}{\partial {\varvec{D}}}=2\boldsymbol{\alpha }\frac{\partial \boldsymbol{\alpha }}{\partial{\varvec{\beta}}}\frac{\partial{\varvec{\beta}}}{\partial {\varvec{D}}}$$
(42)

In the above equation, \(\frac{\partial {{\varvec{E}}}_{0}}{\partial {\varvec{D}}}\) is zero as \({{\varvec{E}}}_{0}\) has no relation to \({\varvec{D}}\). As shown in Eq. 40, \(\boldsymbol{\alpha }\) and \(\frac{\partial \boldsymbol{\alpha }}{\partial{\varvec{\beta}}}\) are non-negative values since \({\beta }_{(j)}\) varies from 0 to 1. \(\frac{\partial{\varvec{\beta}}}{\partial {\varvec{D}}}\) will be negative as the integrity and damage vary oppositely. In addition, \(\dot{{\varvec{D}}}\) in Eq. 36 is the damage evolution ratio, and it is positive according to the definition in Eq. 13 in this paper. Therefore, the damage dissipation \({\varvec{Y}}:\dot{{\varvec{D}}}\) is non-negative, which means:

$${\mathcal{L}}_{{\varvec{D}}}={\varvec{Y}}:\dot{{\varvec{D}}}\ge 0$$
(43)

1.2 Plastic dissipation

For the plastic dissipation, the inequality can be calculated as follows:

$${\mathcal{L}}_{{\varvec{P}}}={\varvec{\sigma}}:\dot{{{\varvec{\varepsilon}}}^{p}}={\varvec{\sigma}}:\frac{\partial {\varvec{g}}}{\partial {{\varvec{\sigma}}}^{\mathrm{eff}}}$$
(44)

where \(g\) is the plastic potential as defined in Sect. 3.1. According to the framework in this paper, the nominal stress can be expressed as follows:

$${\varvec{\sigma}}=\boldsymbol{\alpha }:{{\varvec{\sigma}}}^{\mathrm{eff}}$$
(45)

\(\boldsymbol{\alpha }\) is the same as in Eqs. 10 and 11. Substituting Eq. 45 into Eq. 44, the following equation is acquired:

$${\mathcal{L}}_{{\varvec{P}}}={\varvec{\sigma}}:\dot{{{\varvec{\varepsilon}}}^{p}}=\boldsymbol{\alpha }:{{\varvec{\sigma}}}^{\mathrm{eff}}:\frac{\partial {\varvec{g}}}{\partial {{\varvec{\sigma}}}^{\mathrm{eff}}}$$
(46)

The plastic potential surface defined in this paper is convex; therefore, \({{\varvec{\sigma}}}^{\mathrm{eff}}:\frac{\partial {\varvec{g}}}{\partial {{\varvec{\sigma}}}^{\mathrm{eff}}}\) will be non-negative. Since the principal values of \(\boldsymbol{\alpha }\) are between 0 and 1, it is easy to find that \(\boldsymbol{\alpha }:{{\varvec{\sigma}}}^{\mathrm{eff}}:\frac{\partial {\varvec{g}}}{\partial {{\varvec{\sigma}}}^{\mathrm{eff}}}\) will be non-negative.

Then, the total inequality including stress-induced anisotropic damage and the plastic part can be calculated following Eq. 36:

$$\mathcal{L}={\mathcal{L}}_{{\varvec{D}}}+{\mathcal{L}}_{{\varvec{P}}}\ge 0$$
(47)

which indicates that the proposed model framework and stress-induced anisotropy formulation are fully thermodynamically consistent, and they are rigorous.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, XT., Wang, Z., Zhou, Y. et al. Modelling three-dimensional stress-dependent failure of hard rocks. Acta Geotech. 16, 1647–1677 (2021). https://doi.org/10.1007/s11440-020-01110-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01110-8

Keywords

Navigation