Skip to main content
Log in

TEMPO supported amine functionalized magnetic titania: a magnetically recyclable catalyst for the aerobic oxidative synthesis of heterocyclic compounds

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The present protocol uncover a new strategy to synthesize highly efficient solid TEMPO based catalyst in which 4-oxo-TEMPO was covalently tethered to the surface of amine functionalized magnetic titania. The chemical nature and structure of the synthesized catalyst was authenticated by various techniques such as Fourier transform infrared spectroscopy, thermogravimetric analysis, X-ray powder diffraction, field emission gun scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, elemental analysis, and vibrating sample magnetometer. FT-IR confirmed the immobilization of titania, APTES, and TEMPO on the magnetic nanoparticles. Thermal behaviour of the catalyst was studied by TGA. Morphology of the catalyst was investigated by FEG-SEM and HR-TEM analysis. Furthermore, loading content of TEMPO on the catalyst was quantified by elemental analysis and found to be 0.61 mmol/g. Magnetic properties of the catalyst were investigated by VSM analysis. The catalytic performance of the synthesized catalyst has been investigated for the oxidative synthesis of benzimidazoles, oxidative aromatization of 1,4-dihydropyridines, and oxidative trimerization of indoles using molecular oxygen. In addition, the catalyst could be successfully recycled and reused up to five times without the prominent loss of catalytic activity.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Backvall JE (2010) Modern oxidation methods, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Badr SMI, Barwa RM (2011) Bioorg Med Chem 19:4506

    Article  CAS  PubMed  Google Scholar 

  3. Chen X, Chen T, Zhou Y, Han D, Han LB, Yin SF (2014) Org Biomol Chem 12:3802

    Article  CAS  PubMed  Google Scholar 

  4. Shi Z, Ding S, Cui Y, Jiao N (2009) Angew Chem Int Ed 48:7895

    Article  CAS  Google Scholar 

  5. Wertz S, Studer A (2013) Green Chem 15:3116

    Article  CAS  Google Scholar 

  6. Muench S, Wild A, Friebe C, Haupler B, Janoschka T, Schubert US (2016) Chem Rev 116:9438

    Article  CAS  PubMed  Google Scholar 

  7. Nutting JE, Rafiee M, Stahl SS (2018) Chem Rev 118:4834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mauri E, Micotti E, Rossetti A, Melone L, Papa S, Azzolini G, Rimondo S, Veglianese P, Punta C, Rossi F, Sacchetti A (2018) Soft Matter 14:558

    Article  CAS  PubMed  Google Scholar 

  9. Beejapur HA, Zhang Q, Hu K, Zhu L, Wang J, Ye Z (2019) ACS Catal 9:2777

    Article  CAS  Google Scholar 

  10. Chen T, Xu Z, Zhou L, Hua L, Zhang S, Wang J (2019) Tetrahedron Lett 60:419

    Article  CAS  Google Scholar 

  11. Gao B, Zhang L, Chen T (2015) Chin J Catal 36:1230

    Article  CAS  Google Scholar 

  12. Yu Y, Gao B, Li Y (2013) Chin J Catal 34:1776

    Article  CAS  Google Scholar 

  13. Chandra P, Jonas AM, Fernandes AE (2018) ACS Catal 8:6006

    Article  CAS  Google Scholar 

  14. Zhang H, Fu L, Zhong H (2013) Chin J Catal 34:1848

    Article  CAS  Google Scholar 

  15. Fall A, Sene M, Gaye M, Goomez G, Fall Y (2010) Tetrahedron Lett 51:4501

    Article  CAS  Google Scholar 

  16. Shakir AJ, Culita DC, Calderon-Moreno J, Musuc A, Carp O, Ionita G, Ionita P (2016) Carbon 105:607

    Article  CAS  Google Scholar 

  17. Yu W, Zhou M, Wang T, He Z, Shi B, Xu Y, Huang K (2017) Org Lett 19:5776

    Article  CAS  PubMed  Google Scholar 

  18. Piotrowski P, Pawłowska J, Sadlo JG, Bilewicz R, Kaim AJ (2017) Nanopart Res 19:161

    Article  CAS  Google Scholar 

  19. Karimi B, Farhangi E (2011) Chem Eur J 17:6056

    Article  CAS  PubMed  Google Scholar 

  20. Schtz A, Grass RN, Stark WJ, Reiser O (2008) Chem Eur J 14:8262

    Article  CAS  Google Scholar 

  21. Megiel E (2017) Adv Colloid Interface Sci 250:158

    Article  CAS  PubMed  Google Scholar 

  22. Nieto-Lopez I, Sanchez-Vazquez M, Bonilla-Cruz J (2013) Macromol Symp 325–326:132

    Article  CAS  Google Scholar 

  23. Rajabi F, De S, Luque R (2015) Catal Lett 145:1566

    Article  CAS  Google Scholar 

  24. Yang D, Zhu X, Wei W, Sun N, Yuan L, Jiang M, You J, Wang H (2014) RSC Adv 4:17832

    Article  CAS  Google Scholar 

  25. Yu J, Xia Y, Lu M (2014) Synth Commun 44:3019

    Article  CAS  Google Scholar 

  26. Shamim T, Gupta M, Paul S (2009a) J Mol Catal A Chem 302:15

    Article  CAS  Google Scholar 

  27. Chavan SP, Kharul RK, Kalkote UR, Shivakumar I (2003) Synth Commun 33:1333

    Article  CAS  Google Scholar 

  28. Nakamichi N, Kawashita Y, Hayashi M (2004) Synthesis 36:1015

    Google Scholar 

  29. Kong YB, Zhu JY, Chen ZW, Liu LX (2014) Can J Chem 92:269

    Article  CAS  Google Scholar 

  30. Qin WB, Chang Q, Bao YH, Wang N, Chen ZW, Liu LX (2012) Org Biomol Chem 10:8814

    Article  CAS  PubMed  Google Scholar 

  31. Ghavami M, Koohi M, Kassaee MZ (2013) J Chem Sci 125:1347

    Article  CAS  Google Scholar 

  32. Ghasemzadeh MA, Abdollahi-Basir MH, Babaei M (2015) Green Chem Lett Rev 8:40

    Article  Google Scholar 

  33. Abbasian MJ (2011) Elastomers Plast 43:481

    Article  CAS  Google Scholar 

  34. Rintoul L, Micallef AS, Bottle SE (2008) Spectrochim Acta A Mol Biomol Spectrosc 70:713

    Article  CAS  PubMed  Google Scholar 

  35. Hu K, Tang J, Cao S, Zhang Q, Wang J, Ye Z (2019) J Phys Chem C 123:9066

    Article  CAS  Google Scholar 

  36. Zeitler VA, Brown CA (1957) J Phys Chem 61:1174

    Article  CAS  Google Scholar 

  37. Sharma H, Sharma S, Sharma C, Paul S, Clark JH (2019) Mol Catal 469:27

    Article  CAS  Google Scholar 

  38. Sharma H, Mahajan H, Jamwal B, Paul S (2018) Catal Commun 107:68

    Article  CAS  Google Scholar 

  39. An Q, Yu M, Zhang Y, Ma W, Guo J, Wang C (2012) J Phys Chem C 116:22432

    Article  CAS  Google Scholar 

  40. Wang N, Liu R, Chen J, Liang X (2005) Chem Commun 41:5322

    Article  CAS  Google Scholar 

  41. Shi XJ, Qian J, Tan FF, Yu CM (2013) J Chem Res 37:398

    Article  CAS  Google Scholar 

  42. Veisi H, Sajjadifar S, Biabri PM, Hemmati S (2018) Polyhedron 153:240

    Article  CAS  Google Scholar 

  43. Wang ZG, Cao XH, Yang Y, Lu M (2015) Synth Commun 45:1476

    Article  CAS  Google Scholar 

  44. Mobinikhaledia A, Hamtab A, Kalhorc M, Shariatzadehd M (2014) Iran J Pharmaceut Res 13:95

    Google Scholar 

  45. Shamim T, Gupta M, Paul S (2009b) J Mol Catal A Chem 30:215

    Google Scholar 

  46. Dehghanpour S, Heravi MM, Derikvand F (2007) Molecules 12:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saikh F, De R, Ghosh S (2014) Tetrahedron Lett 55:6171

    Article  CAS  Google Scholar 

  48. Kumar P, Kumar A, Hussain K (2012) Ultrason Sonochem 19:729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thank the Head, SAIF, IIT Bombay for FEG-SEM, HR-TEM, and EDX analysis; SAIF Chandigarh for XRD analysis; CIF, IIT Guwahati for VSM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 351 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Choudhary, A., Sharma, S. et al. TEMPO supported amine functionalized magnetic titania: a magnetically recyclable catalyst for the aerobic oxidative synthesis of heterocyclic compounds. Monatsh Chem 152, 83–94 (2021). https://doi.org/10.1007/s00706-020-02714-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02714-2

Keywords

Navigation