Skip to main content
Log in

On (distance) signless Laplacian spectra of graphs

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

Let Q(G), \({{\mathcal {D}}(G)}\) and \({{\mathcal {D}}}^Q(G)={{\mathcal {D}}iag(Tr)} + {{\mathcal {D}}(G)}\) be, respectively, the signless Laplacian matrix, the distance matrix and the distance signless Laplacian matrix of graph G, where \({{\mathcal {D}}iag(Tr)}\) denotes the diagonal matrix of the vertex transmissions in G. The eigenvalues of Q(G) and \({{\mathcal {D}}}^Q(G)\) will be denoted by \(q_{1} \ge q_{2} \ge \cdots \ge q_{n-1} \ge q_n\) and \(\partial ^Q_1 \ge \partial ^Q_2 \ge \cdots \ge \partial ^Q_{n-1} \ge \partial ^Q_n\) , respectively. A graph G which does not share its distance signless Laplacian spectrum with any other non-isomorphic graphs is said to be determined by its distance signless Laplacian spectrum. Characterizing graphs with respect to spectra of graph matrices is challenging. In literature, there are many graphs that are proved to be determined by the spectra of some graph matrices (adjacency matrix, Laplacian matrix, signless Laplacian matrix, distance matrix etc.). But there are much fewer graphs that are proved to be determined by the distance signless Laplacian spectrum. Namely, the path graph, the cycle graph, the complement of the path and the complement of the cycle are proved to be determined by the distance signless Laplacian spectra. In this paper, we establish Nordhaus–Gaddum-type results for the least signless Laplacian eigenvalue of graph G. Moreover, we prove that the join graph \(G\vee K_{q}\) is determined by the distance singless Laplacian spectrum when G is a \(p-2\) regular graph of order p. Finally, we show that the short kite graph and the complete split graph are determined by the distance signless Laplacian spectra. Our approach for characterizing these graphs with respect to distance signless Laplacian spectra is different from those given in literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph. Linear Algebra Appl. 439, 21–33 (2013)

    Article  MathSciNet  Google Scholar 

  2. Aouchiche, M., Hansen, P.: On the distance signless Laplacian of a graph. Linear Multilinear Algebra 64(6), 1113–1123 (2016)

    Article  MathSciNet  Google Scholar 

  3. Aouchiche, M., Hansen, P.: Cospectrality of graphs with respect to distance matrices. Appl. Math. Comput. 325, 309–321 (2018)

    MathSciNet  MATH  Google Scholar 

  4. Aouchiche, M., Hansen, P.: A survey of Nordhaus–Gaddum type relations. Discrete Appl. Math. 161, 466–546 (2013)

    Article  MathSciNet  Google Scholar 

  5. Cvetković, D., Rowlinson, P., Simić, S.K.: Signless Laplacians of finite graphs. Linear Algebra Appl. 423, 155–171 (2007)

    Article  MathSciNet  Google Scholar 

  6. Cvetković, D., Rowlinson, P., Simić, S.K.: An Introduction to the Theory of Graph Spectra. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  7. Das, K.C.: Nordhaus-Gaddum-type result on the second largest signless Laplacian eigenvalue of a graph. Linear Multilinear Algebra (2019). https://doi.org/10.1080/03081087.2019.1620164

    Article  Google Scholar 

  8. Das, K.C., Aouchiche, M., Hansen, P.: On distance Laplacian and distance signless Laplacian eigenvalues of graphs. Linear Multilinear Algebra 67(11), 2307–2324 (2019)

    Article  MathSciNet  Google Scholar 

  9. Das, K.C., Liu, M.: Complete split graph determined by its (signless) Laplacian spectrum. Discrete Appl. Math. 205, 45–51 (2016)

    Article  MathSciNet  Google Scholar 

  10. Das, K.C., Liu, M.: Kite graphs determined by their spectra. Appl. Math. Comput. 297, 74–78 (2017)

    MathSciNet  MATH  Google Scholar 

  11. de Abreu, N.M.M.: Old and new results on algebraic connectivity of graphs. Linear Algebra Appl. 423, 53–73 (2007)

    Article  MathSciNet  Google Scholar 

  12. de Lima, L.S., Nikiforov, V.: On the second largest eigenvalue of the signless Laplacian. Linear Algebra Appl. 438, 1215–1222 (2013)

    Article  MathSciNet  Google Scholar 

  13. Dobrynin, A., Entringer, R., Gutman, I.: Wiener index of trees: theory and applications. Acta Appl. Math. 66, 211–249 (2001)

    Article  MathSciNet  Google Scholar 

  14. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  15. Hosoya, H.: Topological index. A newly proposed quantity characterizing the topological nature of structural isomers of saturated hydrocarbons. Bull. Chem. Soc. Jpn. 4, 2332–2339 (1971)

    Article  Google Scholar 

  16. Jin, Y.L., Zhang, X.D.: Complete multipartite graphs are determined by their distance spectra. Linear Algebra Appl. 448, 285–291 (2014)

    Article  MathSciNet  Google Scholar 

  17. Li, S., Tian, Y.: Some results on the bounds of signless Laplacian eigenvalues. Bull. Malays. Math. Sci. Soc. 38, 131–141 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lin, H., Das, K.C.: Characterization of extremal graphs from distance signless Laplacian eigenvalues. Linear Algebra Appl. 500, 77–87 (2016)

    Article  MathSciNet  Google Scholar 

  19. Liu, M., Shan, H., Das, K.C.: Some graphs determined by their (signless) Laplacian spectra. Linear Algebra Appl. 449, 154–165 (2014)

    Article  MathSciNet  Google Scholar 

  20. Liu, M., Zhu, Y., Shan, H., Das, K.C.: The spectral characterization of buttery-like graphs. Linear Algebra Appl. 513, 55–68 (2017)

    Article  MathSciNet  Google Scholar 

  21. Liu, M., Yuan, Y., Das, K.C.: The fan graph is determined by its signless Laplacian spectrum. Czech. Math. J (2020). https://doi.org/10.21136/CMJ.2019.0159-18. (in press)

    Article  MathSciNet  MATH  Google Scholar 

  22. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra Appl. 197/198, 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  23. Nordhaus, E.A., Gaddum, J.W.: On complementary graphs. Am. Math. Mon. 63, 175–177 (1956)

    Article  MathSciNet  Google Scholar 

  24. Stein, W.A. et al.: Sage Mathematics Software (Version 6.8). The Sage Development Team. http://www.sagemath.org (2015)

  25. van Dam, E.R., Haemers, W.H.: Which graphs are determined by their spectra. Linear Algebra Appl. 373, 241–272 (2003)

    Article  MathSciNet  Google Scholar 

  26. Xue, J., Lin, H., Das, K.C., Shu, J.: More Results on the Distance (signless) Laplacian Eigenvalues of Graphs. arxiv:1705.07419

  27. Xue, J., Liu, S., Shu, J.: The complements of path and cycle are determined by their distance (signless) Laplacian spectra. Appl. Math. Comput. 328, 137–143 (2018)

    MathSciNet  MATH  Google Scholar 

  28. Xue, J., Liu, S., Shu, J.: On the multiplicity of distance signless Laplacian eigenvalues of graphs. Linear Multilinear Algebra (2020). https://doi.org/10.1080/03081087.2019.1578726. (in press)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are much grateful to three anonymous referees for their valuable comments on our paper, which have considerably improved the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinkar Chandra Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakshith, B.R., Das, K.C. & Sriraj, M.A. On (distance) signless Laplacian spectra of graphs. J. Appl. Math. Comput. 67, 23–40 (2021). https://doi.org/10.1007/s12190-020-01468-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01468-8

Keywords

JEL Classification

Navigation