Skip to main content
Log in

Taxonomic and Functional Diversity of Microbial Communities as an Indicator of the Effectiveness of Water Treatment in Constructed Wetlands

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The article provides an overview devoted to wastewater treatment from nutrients and organic toxicants in Constructed Wetlands (CW). The analysis of the main microbiological processes of wastewater purification in these systems is made. It is shown that biological indicators and parameters of the plant, obtained by the molecular biological methods are the basis for the understanding and tracking of ongoing processes. Taxonomic and functional diversity of microorganisms in CW may be an indicator of the effectiveness of these treatment systems, including the effectiveness of xenobiotics removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. Abdulla, H., Khafagi, I., El-Kareem, M.A., and Dewedar, A., Bacteriophages in engineered wetland for domestic wastewater treatment, Res. J. Microbiol., 2007, vol. 2, no. 12, pp. 889–899.

    Article  Google Scholar 

  2. Adrados, B., Sánchez, O., Arias, C.A., Becares, E., Garrido, L., Mas, J., Brix, H., and Morató, J., Microbial communities from different types of natural wastewater treatment systems: vertical and horizontal flow constructed wetlands and biofilters, Water Res., 2014, vol. 55, pp. 304–312.

    Article  Google Scholar 

  3. Aguiar-Pinto Mina, I., Costa, M., Matos, A., Sousa Coutinho Calheiros, C., and Castro, P.M.L., Polishing domestic wastewater on a subsurface flow constructed wetland: organic matter removal and microbial monitoring, Int. J. Phytorem., 201, vol. 13, no. 10, pp. 947–958.

  4. Ansola, G., Arroyo, P., and Sáenz de Miera, L.E., Characterisation of the soil bacterial community structure and composition of natural and constructed wetlands, Sci. Total Environ., 2014, vols. 473–474, pp. 63–67.

    Article  Google Scholar 

  5. Austin, B., Calomiris, J.J., Walker, J.D., and Colwell, R.R., Numerical taxonomy and ecology of petroleum degrading bacteria, Appl. Environ. Microbiol., 1977, vol. 34, pp. 60–68.

    Article  Google Scholar 

  6. Babatunde, A.O., Zhao, Y.Q., O’Neill, M., and O’Sullivan, B., Constructed wetlands for environmental pollution control: a review of developments, research and practice in Ireland, Environ. Int., 2008, vol. 34, no. 1, pp. 116–126.

    Article  Google Scholar 

  7. Bai, Y., Liang, J., Liu, R., Hu, C., and Qu, J., Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland, Environ. Technol., 2014, vol. 35, no. 20, pp. 2521–2527.

    Article  Google Scholar 

  8. Bakanov, A.I., The method of ranking hydrobiological data depending on the environmental situation in the reservoir, Biol. Ext. Water., 1997, vol. 1, pp. 53–58.

    Google Scholar 

  9. Balciunas, E.M., Kappelmeyer, U., Harms, H., and Heipieper, H.J., Increasing ibuprofen degradation in constructed wetlands by bioaugmentation with gravel containing biofilms of an ibuprofen-degrading Sphingobium yanoikuyae, Eng. Life Sci., 2019. https://doi.org/10.1002/elsc.201900097

  10. Barsanti, L. and Gualtieri, P., Algae: Anatomy, Biochemistry, and Biotechnology, Boca Raton: CRC Press, 2014, 2nd ed., pp. 361.

    Book  Google Scholar 

  11. Behrends, L., Houke, L., Bailey, E., Jansen, P., and Brown, D., Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater, Water Sci. Technol., 2001, vol. 44, nos. 11–12, pp. 399–405.

    Article  Google Scholar 

  12. Benezet, H.J. and Matusumura, F., Isomerization of ‑BHC to -BHC in the environment, Nature, 1973, vol. 243, pp. 480–481.

    Article  Google Scholar 

  13. Bock, E., Schmidt, I., Stüven, R., and Zart, D., Nitrogen loss caused by denitrifying Nitrosomonascells using or hydrogenas electron donors and nitrite as electron acceptor, Arch. Microbiol., 1995, ammonium vol. 163, no. 1, pp. 16–20.

  14. Bruhn, C., Batley, R.C., and Knockmues, H.J., The in-vivo construction of 4-chloro-2-nitrophenol assimilatory bacteria, Arch. Microbiol., 1988, vol. 150, pp. 171–177.

    Article  Google Scholar 

  15. Bunge, M., Adrian, L., Kraus, A., Lorenz, W.G., Andreesen, J.R., Gorisch, H., and Lechner, U., Reductive dehalogenation of chlorinated dioxins by the anaerobic bacterium Dehalococcoides ethenogenes genes sp. strain CBDBI, Nature, 2003, vol. 421, pp. 357–360.

    Article  Google Scholar 

  16. Cavigelli, M.A. and Robertson, G.P., Role of denitrifier diversity in rates of nitrous oxide consumption in a terrestrial ecosystem, Soil Biol. Biochem., 2001, vol. 33, pp. 297–310.

    Article  Google Scholar 

  17. Cavigelli, M.A. and Robertson, G.P., The functional significance of denitrifier community composition in a terrestrial ecosystem, Ecol., 2000, vol. 81, pp. 229–241.

    Article  Google Scholar 

  18. Chang, H.K. and Zylstra, G.J., Characterization of the phthalate permease ophD from Burkholderia cepacia DBO1, J. Bacteriol., 1999, vol. 181, pp. 6197–6199.

    Article  Google Scholar 

  19. Chatterjee, S., Gupta, D., Roy, P., Chatterjee, N.C., Saha, P., and Dutta, S., Study of a lead tolerant yeast strain BUSCY1 (MTCC9315), African J. Microbiol. Res., 2011, vol. 5, pp. 5362–5372.

    Google Scholar 

  20. Chaudhry, G.R. and Chapalamadugu, S., Biodegradation of halogenated organic compounds, Microbiol., 1991, vol. 55, pp. 59–79.

    Google Scholar 

  21. Cheng, M., Huang, C., Wu, H.P., and Qin, L., Synthesis of surface molecular imprinted TiO2/graphene photocatalyst and its highly efficient photocatalytic degradation of target pollutant under visible light irradiation, Appl. Surf. Sci., 2016, vol. 390, pp. 368–376.

    Article  Google Scholar 

  22. Coates, J.D., Chakraborty, R., Lack, J.G., O’Connor, S.M., Cole, K.A., Bender, K.S., Achenbach, L.A., Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas, Nature, 2001, vol. 411, pp. 1039–1043.

    Article  Google Scholar 

  23. Coban, O., Kuschk, P., Kappelmeyer, U., Spott, O., Martienssen, M., Jetten, M.S.M., and Knoeller, K., Nitrogen transforming community in a horizontal subsurface-flow constructed wetland, Water Res., 2015, vol. 74, pp. 203–212. https://doi.org/10.1016/j.watres.2015.02.018

    Article  Google Scholar 

  24. Cydzik-Kwiatkowska, A. and Zielińska, M., Bacterial communities in full-scale wastewater treatment systems, World J. Microbiol. Biotechnol., 2016, vol. 32, p. 8.

    Article  Google Scholar 

  25. De, J., Ramaiah, N., and Vardanyan, L., Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury, Mar. Biotechnol., 2008, vol. 10, pp. 471–477.

    Article  Google Scholar 

  26. Decamp, O. and Warren, A., Bacterivory in ciliates isolated from constructed wetlands (reed beds) used for wastewater treatment, Water Res., 1998, vol. 32, pp. 1989–1996.

    Article  Google Scholar 

  27. Decamp, O. and Warren, A., Investigation of Escherichia coli removal in various designs of subsurface flow wetlands used for wastewater treatment, Ecol. Eng., 2001, vol. 14, pp. 293–299.

    Article  Google Scholar 

  28. Decamp, O., Warren, A., and Sanchez, R., The role of ciliated protozoa in subsurface flow wetlands and their potential as bioindicators, Water Sci. Technol., 1999, vol. 40, no. 3, pp. 91–98.

    Article  Google Scholar 

  29. Desta, A.F., Assefa, F., Leta, S., Stomeo, F., Wamalwa, M., Njahira, M., and Appolinaire, D., Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia. Plos One, 2014, vol. 9, no. 12, e115576. https://doi.org/10.1371/journal.pone.0115576

    Article  Google Scholar 

  30. Don, R.H. and Pemberton, J.M., Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus, Bacteriol., 1981, vol. 145, pp. 681–686.

    Article  Google Scholar 

  31. Dordio, A. and Carvalho, A., Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix, J. Hazard. Mater., 2013, 252–253C, pp. 272–292. https://doi.org/10.1016/j.jhazmat.2013.03.008

  32. Dushenko, W.T., Bright, D.A., and Reimer, K.J., Arsenic bioaccumulation and toxicity in aquatic macrophytes exposed to gold-mine effluent: relationships with environmental partitioning, metal uptake and nutrients, Aquat. Bot., 1995, vol. 50, pp. 141–58.

    Article  Google Scholar 

  33. Dykes, G.A., Timm, R.G., and Von, H.A., Azoreductase activity in bacteria associated with the greening of instant chocolate puddings, Appl. Environ. Microbiol., 1994, vol. 60, pp. 3027–3029.

    Article  Google Scholar 

  34. El-Barbary, T. and Hafez, M., Bioremediation Potential of Zn(II) by Different Bacterial Species, 2018. https://doi.org/10.21276/sjbr.2018.3.4.3

  35. Faulkner, S.P. and Richardson, C.J., Physical and chemical characteristics of freshwater wetland soils, in Constructed Wetlands for Water Quality Improvement, Moshiri, G.A., Ed., Boca Raton: Lewis Publ., pp. 315–320.

  36. Faulwetter, J.L., Gagnon, V., Sundberg, C., Chazarenc, F., Burr, M.D., Brisson, J., Camper, A.K., and Stein, O.R., Microbial processes influencing performance of treatment wetlands: a review, Ecol. Eng., 2009, vol. 35, no. 6, pp. 987–1004.

    Article  Google Scholar 

  37. Flood, J.A. and Ashbolt, N.J., Virus-sized particles can be trapped and concentrated one hundred-fold within wetland biofilms, Adv. Environ. Res., 200, vol. 3, no. 7, pp. 403–411.

  38. Gopal, B., Natural and constructed wetlands for wastewater treatment: potentials and problems, Water Sci. Technol., 1999, vol. 40, pp. 27–35.

    Article  Google Scholar 

  39. Habe, H. and Omori, T., Genetics of polycyclic aromatic hydrocarbon degradation by diverse aerobic bacteria, Biosci. Biotechnol. Biochem., 2003, vol. 67, pp. 225–243.

    Article  Google Scholar 

  40. Hammer, D.A., Constructed wetlands for wastewater treatment. Municipal, industrial and agricultural, Chelsea: Lewis Publishers, 1989, pp. 416–469.

    Google Scholar 

  41. He, J., Ritalahti, K.M., Yang, K.L., Koenigsberg, S.S., and Löffler, F.E., Detoxification of vinyl chloride to ethene coupled to an anaerobic bacterium, Nature, 2003, vol. 424, pp. 62–65.

    Article  Google Scholar 

  42. He, T., Guan, W., Luan, Z., and Xie, S., Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment, Appl. Microbiol. Biotechnol., 2016, vol. 100, pp. 1479–1488.

    Article  Google Scholar 

  43. Hijosa-Valsero, M., Matamoros, V., Sidrach-Cardona, R., Martín-Villacorta, J., et al., Comprehensive assessment of the design con-figuration of constructed wetlands for the removal of pharmaceuticals and personal care products from urban wastewaters, Water Res., 2010, vol. 44, pp. 3669–3678.

    Article  Google Scholar 

  44. Hinsinger, P. and Marschner, P., Rhizosphere–perspectives and challenges–a tribute to Lorenz Hiltner, 12–17 September, 2004, Munich, Germany, Plant and Soil, 2006, vol. 283, no. 1, pp. vii–viii.

    Article  Google Scholar 

  45. Hinsinger, P., Bengough, A.G., Vetterlein, D., and Young, I.M., Rhizosphere: biophysics, biogeochemistry and ecological relevance, Plant Soil, 2009, vol. 321, nos. 1–2, pp. 117–152.

    Article  Google Scholar 

  46. Huang, D.L., Zeng, G.M., Feng, C.L., Hu, S., Jiang, X.Y., Tang, L., Su, F.F., Zhang, Y., Zeng, W., and Liu, H.L., Degradation of lead-contaminated lignocellulosic waste by Phanerochaete chrysosporium and the reduction of lead toxicity, Environ. Sci. Technol., 2008, vol. 42, no. 13, pp. 4946–4951.

    Article  Google Scholar 

  47. Huang, Y.L., Feng, H., Lu, H., and Zeng, Y.H., A thorough survey for Cr-resistant and/or -reducing bacteria identified comprehensive and pivotal taxa, Int. Biodeter. Biodegr., 2017, vol. 117, pp. 22–30.

    Article  Google Scholar 

  48. Humbert, S., Tarnawski, S., Fromin, N., Mallet, M.P., Aragno, M., and Zopfi, J., Molecular detection of anammox bacteria in terrestrial ecosystems: distribution and diversity, ISME J., 2010, vol. 4, no. 3, pp. 450–454.

    Article  Google Scholar 

  49. Humbert, S., Zopfi, J., and Tarnawski, S.E., Abundance of anammox bacteria in different wetland soils, Environ. Microbiol. Rep., 2012, vol. 4, no. 5, pp. 484–490.

    Article  Google Scholar 

  50. Ibekwe, A.M., Ma, J., Murinda, S., and Reddy, G.B., Bacterial community dynamics in surface flow constructed wetlands for the treatment of swine waste, Sci. Total Environ., 2016, vol. 544, pp. 68–76.

    Article  Google Scholar 

  51. Ibekwe, A., Lyon, S., Leddy, M., and Jacobson-Meyers, M., Impact of plant density and microbial composition on water quality from a free water surface constructed wetland, J. Appl. Microbiol., 2007, vol. 102, pp. 921–936.

    Google Scholar 

  52. Ilyas, H. and Masih, I., The effects of different aeration strategies on the performance of constructed wetlands for phosphorus removal, Environ. Sci. Pollut. Res., 2018, vol. 25, no. 6, pp. 5318–5335. https://doi.org/10.1007/s11356-017-1071-2

    Article  Google Scholar 

  53. Israel, Yu.A. and Abakumov, V.A., On the ecological state of the surface waters of the USSR and the criteria for environmental regulation, in Ecological Modifications and Criteria for Environmental Regulation, L.: Gidrometeoizdat, 1991, p. 7–18.

    Google Scholar 

  54. Jia, W., Zhang, J., Wu, J., Xie, H., and Zhang, B., Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: a microcosm experiment, Desalination, 2010, vol. 262, no. 1, pp. 202–208. https://doi.org/10.1016/j.desal.2010.06.012

    Article  Google Scholar 

  55. Jones, D. and Hinsinger, P., The rhizosphere: complex by design, Plant Soil, 2008, vol. 312, pp. 1–6.

    Article  Google Scholar 

  56. Kadlec, R.H., Treatment Wetlands, Boca Raton: CRC Press, 2009, 2nd Ed.

    Google Scholar 

  57. Kanaly, R.A. and Harayama, S., Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria, J. Bacteriol., 2000, pp. 2059–2067.

  58. Karns, J.S., Kilbane, J.J., Duttagupta, S., and Chakrabarty, A.M., Metabolism of halophenols by 2,4,5-trichlorophenoxyacetic acid degrading Pseudomonas cepacian, Appl. Environ. Microbiol., 1983, vol. 46, pp. 1176–1181.

    Article  Google Scholar 

  59. Knowles, R., Denitrification, Microbiol. Rev., 1982, vol. 46, pp. 43–70.

    Article  Google Scholar 

  60. Kuznetsov, A.E. and Gradova, N.B., Scientific Basis of Ecobiotechnol., Textbook, M.: Mir, 2006.

  61. Kuzyakov, Y. and Blagodatskaya, E., Microbial hotspots and hot moments in soil: Concept & review, Soil Biol. Biochem., 2015, vol. 83, pp.184–199.

    Article  Google Scholar 

  62. Latorre, J., Reineke, W., and Knackmuss, H.J., Microbial metabolism of chloroanilines: enhanced evolution by natural genetic exchange, Arch. Microbiol., 1984, vol. 140, pp. 159–165.

    Article  Google Scholar 

  63. Laybourn-Parry, J., Boyall, J., and Rogers, P., The role of flagellated and ciliated protozoa in lagoon and grass filter treatment systems, Water Res., 1999, vol. 33, no. 13, pp. 2971–2977.

    Article  Google Scholar 

  64. Levich, A.P., Biotic concept of environmental control, Rep. RAS, 1994, vol. 337, no. 2, pp. 257–259.

    Google Scholar 

  65. Li, H., Zhang, Y., Li, D., Xu, H., Chen, G., and Zhang, C., Comparisons of different hypervariable regions of rrs genes for fingerprinting of microbial communities in paddy soils, Soil Biol. Biochem., 2009, vol. 41, no. 5, pp. 954–968. https://doi.org/10.1016/j.soilbio.2008.10.030

    Article  Google Scholar 

  66. Lin, H., You, S., and Liu, L., Characterization of Microbial Communities, Identification of Cr(VI) Reducing Bacteria in Constructed Wetland and Cr(VI) Removal Ability of Bacillus cereus, Sci. Rep., 2019, vol. 9, 12 873. https://doi.org/10.1038/s41598-019-49333-4

  67. Maine, M.A., Hadad, H.R., Sánchez, G., Caffaratti, S., and Pedro, M.C., Kinetics of Cr(III) and Cr(VI) removal from water by two floating macrophytes, Int. J. Phytoremediat., 2016, vol. 18, pp. 261–268.

    Article  Google Scholar 

  68. Mendes, R., Garbeva, P., and Raaijmakers, J.M., The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms, FEMS Microbiol. Rev., 2013, vol. 37, no. 5, pp. 634–663.

    Article  Google Scholar 

  69. Menon, P., Billen, G., Servais, P., et al., Mortality rates of autochthonous and fecal bacteria in natural aquatic ecosystems, 2003, vol. 37, no. 17, pp. 4151–4158.

  70. Merlin, G., Pajean, J.L., and Lissolo, T., Performances of constructed wetlands for municipal wastewater treatment in rural mountainous area, Hydrobiologia, 2002, vol. 469, no. 1/3, pp. 87–98. https://doi.org/10.1023/A:1015567325463

    Article  Google Scholar 

  71. Moiseenko, T.I., Ecotoxicological approach to the regulation of anthropogenic pressures on the water bodies of the North, Ecol., 1998, vol. 6, pp. 452–461.

    Google Scholar 

  72. Murray, R.E., Feig, Y.S., and Tiedje, J.M., Spatial heterogeneity in the distribution of denitrifying bacteria associated with denitrification activity zones, Appl. Environ. Microbiol., 1995, vol. 61, pp. 2791–2793.

    Article  Google Scholar 

  73. Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., and Oberson, A., Basal organic phosphorus mineralization in soils under different farming systems, Soil Biol. Biochem., 2004, vol. 36, pp. 667–675.

    Article  Google Scholar 

  74. Paredes, D., Kuschk, P., Stange, F., Muller, R.A., and Koser, H., Model experiments on improving nitrogen removal in laboratory scale subsurface constructed wetlands by enhancing the anaerobic ammonia oxidation, Water Sci. Technol., 2007, vol. 56, no. 3, pp. 145–150.

    Article  Google Scholar 

  75. Paul, S., Workbook for Managing Urban Wetlands in Australia, Sydney Olympic Park Authority, 2013, 1st Ed., ISBN 978-0-987-4020-0-4.

    Google Scholar 

  76. Philippot, L., Raaijmakers, J.M., Lemanceau, P., and Van Der Putten, W.H., Going back to the roots: the microbial ecology of the rhizosphere, Nat. Rev. Microbiol., 2013, vol. 11, no. 11, p. 789.

    Article  Google Scholar 

  77. Pierret, A., Doussan, C., Capowiez, Y., and Bastardie, F., Root functional architecture: a framework for modeling the interplay between roots and soil, Vadose Zone J., 2007, vol. 6, no. 2, pp. 269–281.

    Article  Google Scholar 

  78. Proakis, E., Pathogen removal in constructed wetlands focusing on biological predation and marine recreational water quality, Proc., WEFTEC 2003 National Conf., 76th Annual Conf. Exhibition, Alexandria, 2003, pp. 310–332.

  79. Razumovsky, L.V., Bioindication of the general level of anthropogenic load by graphical comparison of the internal structure of diatom complexes (on the example of the river system of the Volga-Akhtuba interfluve), Gas Industry, 1999, p. 72.

    Google Scholar 

  80. Reife, A. and Freeman, H.S., Pollution prevention in the production of dyes and pigments, Text. Chem. Color Am. Dyes Rep., 2000, vol. 32, pp. 56–60.

    Google Scholar 

  81. Schmidt, I., Sliekers, O., Schmid, M., Bock, E., Fuerst, J., Gijs Kuenen, J., Jetten, M.S.M., and Strous, M., New concepts of microbial treatment processes for the nitrogen removal in wastewater, FEMS Microbiol. Rev., 2003, vol. 27, no. 4, pp. 481–492.

    Article  Google Scholar 

  82. Scholz, M. and Lee, B.H., Constructed wetlands: a review, Int. J. Environ. Res., 2005, vol. 62, pp. 1256–1261.

    Google Scholar 

  83. Scott, R. and Tanner, C.C., Influence of biofilm on removal of surrogate faecal microbes in a constructed wetland and maturation pond, Water Sci. Technol., 2005, vol. 1, no. 9, pp. 315–322.

    Google Scholar 

  84. Shchegolkova, N.M., Krasnov, G.S., Belova, A.A., Dmitriev, A.A., Kharitonov, S.L., Klimina, K.M., Melnikova, N.V., and Kudryavtseva, A.V., Microbial Community Structure of Activated Sludge in Treatment Plants with Different Wastewater Compositions, Frontiers in Microbiol., 2016, vol. 18, February. https://doi.org/10.3389/fmicb.2016.00090

  85. Shitikov, V.K., Rosenberg, G.S., and Zinchenko, T.D., Quantitative hydroecology, Tolyatti: IEVB RAS.

  86. Si, Z., Song, X., Wang, Y., Cao, X., Zhao, Y., Wang, B., Yan, C., and Arefe, A., Intensified heterotrophic denitrification in constructed wetlands using four solid carbon sources: Denitrification efficiency and bacterial community structure, Bioresour. Technol., 2018, vol. 267, pp. 416–425. https://doi.org/10.1016/j.biortech.2018.07.029

    Article  Google Scholar 

  87. Sim, C.H., The use of constructed wetlands for wastewater treatment, Wetlands International, 2003, Malaysia Office.

    Google Scholar 

  88. Singha, A., Vyasb, D., and Malaviya, P., Two-stage phyto-microremediation of tannery effluent by Spirodela polyrrhiza (L.) Schleid. and chromium resistant bacteria, Bioresour. Technol., 2016, vol. 216, pp. 883–893.

    Article  Google Scholar 

  89. Sinha, S., Chattopadhyay, P., Pan, I., Chatterjee, S., Chanda, P., Bandyopadhyay, D., Das, K., and Sen, S.K., Microbial transformation of xenobiotics for environmental bioremediation, African J. Biotechnol., 2009, vol. 8, no. 22, pp. 6016–6027.

    Article  Google Scholar 

  90. Sinha, V., Manikandan, N.A., Pakshirajan, K., and Chaturvedi, R., Continuous removal of Cr(VI) from wastewater by phytoextraction using Tradescantia pallida plant based vertical subsurface flow constructed wetland system, Int. Biodeter. Biodegr., 2017, vol. 119, pp. 96–103.

    Article  Google Scholar 

  91. Sobolewski, A., Metal species indicate the potential of constructed wetlands for long-term treatment of metal mine drainage, Ecol. Eng. Dushenko, vol. 6, pp. 259–71.

  92. Spain, J. and Nishino, S.F., Degradation of 1,4 dichlorobenzene by a Pseudomonas sp., Appl. Environ. Microbiol., 2007, vol. 53, pp. 1010–1019.

    Article  Google Scholar 

  93. Stefanakis, A.I., Akratos, C.S., and Tsihrintzis, V.A., Vertical Flow Constructed Wetlands: Ecoengineering Systems for Wastewater and Sludge Treatment, Amsterdam: Elsevier Sci., 2014, 1st Ed.

    Book  Google Scholar 

  94. Stevik, T.K., Aa, K., Ausland, G., and Hanssen, J.F., Retention and removal of pathogenic bacteria in wastewater percolating through porous media: a review, Water Res., 2004, vol. 38, pp. 1355–1367.

    Article  Google Scholar 

  95. Stolz, A., Basic and applied aspects in the microbial degradation of azo dyes, Appl. Microbiol. Biotechnol., 2001, vol. 56, pp. 69–80.

    Article  Google Scholar 

  96. Stott, R., May, E., Matsushita, E., and Warren, A., Protozoan predation as a mechanism for the removal of Cryptosporidium oocysts from wastewaters in constructed wetlands, Water Sci. Technol., 2001, vol. 44, pp. 191–198.

    Article  Google Scholar 

  97. Stottmeister, U., Wießner, A., Kuschk, P., Kappelmeyer, U., Kästner, M., Bederski, O., Müller, R.A., and Moormann, H., Effects of plants and microorganisms in constructed wetlands for wastewater treatment, Biotechnol. Adv., 2003, vol. 22, nos. 1–2, pp. 93–117.

    Article  Google Scholar 

  98. Strauch, E., Schwudke, D., and Linscheid, M., Predatory mechanisms of Bdellovibrio and like organisms, Future Microbiol., 2007, vol. 2, no. 1, pp. 63–73. https://doi.org/10.2217/17460913.2.1.63

    Article  Google Scholar 

  99. Sutherland, T.D., Horne, I., Russell, R.J., and Oakeshott, J.G., Isolation and characterization of a Myobacterium strain that metabolizes the insecticide endosulfan, Appl. Microbiol., 2020, vol. 93, pp. 380–389.

    Article  Google Scholar 

  100. Tao, W.D., Wen, J.F., and Huchzermeier, M., Batch operation of biofilter—free-water surface wetland series for enhancing nitritation and anammox, Water Environ. Res., 2011, vol. 83, no. 6, pp. 541–548.

    Article  Google Scholar 

  101. Truu, M., Juhanson, J., and Truu, J., Microbial biomass, activity and community composition in constructed wetlands, Sci. Total Environ., 2009, vol. 407, no. 13, pp. 3958–3971.

    Article  Google Scholar 

  102. Vacca, G., Wand, H., Nikolausz, M., Kuschk, P., and Kästner, M., Effect of plants and filter material on bacterial removal in pilot scale constructed wetlands, Water Res., 2005, pp. 1361–1373.

  103. Valipour, A. and Ahn, Y., Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review, Environ. Sci. Pollut. Res., 2015, vol. 23, pp. 180–197.

    Article  Google Scholar 

  104. Vendruscolo, F., Ferreira, G.L.D.R., and Filh, N.R.A., Biosorption of hexavalent chromium by microorganisms, Int. Biodeter. Biodegr., 2017, vol. 119, pp. 87–95.

    Article  Google Scholar 

  105. Vohla, C., Alas, R., Nurk, K., Baatz, S., and Mander, Ü., Dynamics of phos-phorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland, Sci. Total Environ., 2017, vol. 380, nos. 1–3, pp. 66–74. https://doi.org/10.1016/j.scitotenv.2006.09.012

    Article  Google Scholar 

  106. Vymazal, J., Removal of enteric bacteria in constructed treatment wetlands with emergent macrophytes: a review, J. Environ. Sci. Health, 2005, vol. 40, nos. 6–7, pp. 1355–1367.

    Article  Google Scholar 

  107. Vymazal, J., Constructed wetlands for wastewater treatment, Water, 2010, vol. 2, pp. 530–549. ISSN 2073-4441.

  108. Vymazal, J., Greenway, M., Tonderski, K., Brix, H., and Mander, U., Constructed wetlands for wastewater treatment, Verhoeven, J.T.A., Beltman, B., Bobbink, R., and Whigham, D.F., Eds., Wetlands and natural resource management, Ecol. studies, 2006, vol. 190, pp. 69–96.

  109. Vymazal, J. and Kröpfelová, L., A three-stage experimental constructed wetland for treatment of domestic sewage: First 2 years of operation, Ecol. Eng., 2011, vol. 37, pp. 90–98.

    Article  Google Scholar 

  110. Vymazal, J., Brezinova, T.D., Kozeluh, M., and Kule, L., Occurrence and removal of pharmaceuticals in four scale constructed wetlands in the Czech Republic–the first year of monitoring, Ecol. Eng., 2017, vol. 98, pp. 354–364.

    Article  Google Scholar 

  111. Wallace, S. and Austin, D., Emerging models for nitrogen removal in treatment wetlands, J. Environ. Health, 2018, vol. 71, pp. 10–16.

    Google Scholar 

  112. Wallenstein, M.D., Myrold, D.D., Fireston, M., and Voytek, M., Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods, Ecol. Appl., 2006, vol. 16, pp. 2143–2152.

    Article  Google Scholar 

  113. Wand, H., Vacca, G., Kuschk, P., Krüger, M., and Kästner, M., Removal of bacteria by filtration in planted and non-planted sand columns, Water Res., 2007, vol. 41, pp. 159–167

    Article  Google Scholar 

  114. Wang, X., Tian, Y., Zhao, X., Peng, S., Wu, Q., and Yan, L., Effects of aeration position on organics, nitrogen and phosphorus removal in combined oxidation pond–constructed wetland systems, Bioresour. Technol., 2015, vol. 198, pp. 7–15. https://doi.org/10.1016/j.biortech.2015.08.150

    Article  Google Scholar 

  115. Wang, L. and Li, T., Anaerobic ammonium oxidation in constructed wetlands with biocontact oxidation as pretreatment, Ecol. Engineering, 2011, vol. 37, no. 8, pp. 1225–1230.

    Article  Google Scholar 

  116. Wei, X., Xin, X., and Junyin, X., Purification effect and microorganisms diversity in an Acorus calamus constructed wetland on petroleum-containing wastewater, Environ. Pollut. Bioavailability, 2019, vol. 32, no. 1, pp. 19–25. https://doi.org/10.1080/26395940.2019.1711200

    Article  Google Scholar 

  117. Weir, K.M., Sutherland, T.D., Horne, I., Russell, R.J., and Oakeshott, J.G., A single moonoxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulphate in an Arthrobacter sp., Appl. Environ. Microbiol., 2006, vol. 72, pp. 3524–3530.

    Article  Google Scholar 

  118. Wetzel, R.G., Limnology. Lake and River Ecosystems, Philadelphia: Acad. Press, 2001, 3rd Ed.

    Google Scholar 

  119. Wieder, R.K., A survey of constructed wetlands for acid coal mine drainage treatment in the eastern United States, Wetlands, 1989, vol. 9, pp. 299–315.

    Article  Google Scholar 

  120. Wießner, A., Kappelmeyer, U., Kuschk, P., and Kästner, M., Influence of redox condition on dynamics on the removal efficiency of a laboratory–scale constructed wetland, Water Res., 2005, vol. 39, no. 1, pp. 248–256.

    Article  Google Scholar 

  121. Winter, M. and Kickuth, R., Elimination of sulphur compounds from wastewater by the root zone process— II. Mode of formation of sulphur deposits, Water Res., 1989, vol. 23, no. 2, pp. 547–560.

    Article  Google Scholar 

  122. Yen, K.M. and Serdar, C.M., Genetics of naphthalene catabolism in Pseudomonads, CRC Crit. Rev. Microbiol., 1988, vol. 15, pp. 247–268.

    Article  Google Scholar 

  123. Zhang, C., Wang, B., Dai, X., Li, S., Lu, G., and Zhou, Y., Structure and function of the bacterial communities during rhizoremediation of hexachlorobenzene in constructed wetlands, Environ. Sci. Pollut. Res., 2017, vol. 24, no. 12, pp. 11483–11492. https://doi.org/10.1007/s11356-017-8463-1

    Article  Google Scholar 

  124. Zhang, L., Lv, T., Zhang, Y., Stein, O., et al., Effects of constructed wetland design on ibuprofen removal—A mesocosm scale study, Sci. Total Environ., 2017, vol. 609, pp. 38–45.

    Article  Google Scholar 

  125. Zhu, G.B., Jetten, M.S.M., Kuschk, P., Ettwig, K.F., and Yin, C.Q., Potential roles of anaerobic ammonium and methane oxidation in the nitrogen cycle of wetland ecosystems, Appl. Microbiol. Biotechnol., 2010, vol. 86, no. 4, pp. 1043–1055.

    Article  Google Scholar 

  126. Zhu, G.B., Wang, S.Y., Feng, X.J., Fan, G.N., Jetten, M.S.M., and Yin, C.Q., Anammox bacterial abundance, biodiversity and activity in a constructed wetland, Environ. Sci. Technol., 2011, vol. 45, no. 23, pp. 9951–9958.

    Article  Google Scholar 

  127. Zumft, W.G., Cell biology and molecular basis of denitrification, Microbiol. Mol. Biol. Rev., 1997, vol. 61, pp. 533–616.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 18-29-25 027.

Name of state work “Development of scientific and technological foundations for integrated water resources management and protection of water bodies in the Russian Federation” (no. 0147-2019-0004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Shchegolkova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchegolkova, N.M., Kharitonov, S.L., Semenov, M.V. et al. Taxonomic and Functional Diversity of Microbial Communities as an Indicator of the Effectiveness of Water Treatment in Constructed Wetlands. Water Resour 47, 1020–1030 (2020). https://doi.org/10.1134/S0097807820060111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807820060111

Keywords:

Navigation