Skip to main content
Log in

Minimizing Critical Event Delay and Maximizing Lifetime in a Hybrid Data-Gathering Protocol for WSNs

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In time driven data-gathering, sensor nodes generate periodic data which are gathered at the base-station. Whereas in event driven data gathering, sensors remain idle until a critical event occurs and then the event information is sent quickly to the central unit. In hybrid data-gathering, the nodes switches between time and event-driven strategy. In this paper, we propose a hybrid data-gathering protocol that minimizes the critical event reporting delay, using anycasting forwarding techniques, and maximizes the network lifetime using sleep/wake scheduling. In our protocol, the sensor nodes generate periodic events and if the nodes detect a critical event, the event information is sent quickly to the central unit. We estimate the expected critical event reporting delay using stochastic approach and validate the same in a Monte-Carlo simulation. We show the effectiveness of our protocol, that minimizes the critical event reporting delay, using ns2 simulation, and compare our protocol with existing hybrid data-gathering protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

Not applicable for this manuscript.

References

  1. Sadhukhan, D., & Rao, S. V. (2019). Minimum cost event driven WSN with spatial differentiated QOS requirements. Wireless Networks, 25(7), 3899–3915.

    Article  Google Scholar 

  2. Wu, Y., Fahmy, S., & Shroff, N. B. (2009). Optimal sleep/wake scheduling for time-synchronized sensor networks with qos guarantees. IEEE/ACM Transactions on Networking, 17(5), 1508–1521.

    Article  Google Scholar 

  3. Kim Joohwan SNB Lin Xiaojun. (2010). Minimizing delay and maximizing lifetime for wireless sensor networks with anycast. IEEE/ACM Transactions on Networking, 18(2), 515–528.

    Article  Google Scholar 

  4. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  5. Swain, A. R., & Hansdah, R. (2015). A model for the classification and survey of clock synchronization protocols in WSNs. Ad Hoc Networks, 27, 219–241.

    Article  Google Scholar 

  6. Bagaa, M., & Djenouri, D. (2015). Synchronization protocols and implementation issues in wireless sensor networks: A review. IEEE Systems Journal, 40, 617–627

    Google Scholar 

  7. Afsar, M. M., & Tayarani-N, M. H. (2014). Clustering in sensor networks: A literature survey. Journal of Network and Computer applications, 46, 198–226.

    Article  Google Scholar 

  8. Diaz, S., Mendez, D., & Kraemer, R. (2019). A review on self-healing and self-organizing techniques for wireless sensor networks. Journal of Circuits, Systems and Computers, 28(05), 1930005.

    Article  Google Scholar 

  9. Dhand, G., & Tyagi, S. (2016). Data aggregation techniques in WSN: Survey. Procedia Computer Science, 92, 378–384.

    Article  Google Scholar 

  10. Sadhukhan, D., & Rao, S. V. (2017). Effect of clock skew in event driven, delay constrained heterogeneous WSN with anycast. Wireless Personal Communications, 97(4), 4967–4980.

    Article  Google Scholar 

  11. Sadhukhan, D., & Rao, S. V. (2020). Energy efficient multi-beacon guard method for periodic data gathering in time-synchronized WSN. Wireless Networks, 26(7), 5337–5354.

    Article  Google Scholar 

  12. Sichitiu, M. (2004). Cross-layer scheduling for power efficiency in wireless sensor networks. In Proceedings of IEEE infocom.

  13. Rajendran, V., Obraczka, K., & Garcia-Luna-Aceves, J. (2006). Energy-efficient, collision- free medium access control for wireless sensor networks. Journal of Wireless Networking, 12, 63–78.

    Article  Google Scholar 

  14. Zhao, Y., Wu, J., & Lu, S. (2010). Vbs: Maximum lifetime sleep scheduling for wireless sensor networks using virtual backbones. In Proceedings of IEEE infocom.

  15. Jang, U., Lee, S., & Yoo, S. (2012). Optimal wake-up scheduling of data gathering trees for wireless sensor networks. Journal of Parallel and Distributed Computing, 72, 536–546.

    Article  Google Scholar 

  16. Pantazis, N. A., Nikolidakis, S. A., & Vergados, D. D. (2013). Energy-efficient routing protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 15(2), 551–591.

    Article  Google Scholar 

  17. Awerbuch, B., Brinkmann, A., & Scheideler, C. (2002). Anycasting and multicasting in adversarial systems: Routing and admission control. Baltimore, MD: The Johns Hopkins University.

    MATH  Google Scholar 

  18. Hu, W., Bulusu, N., & Jha, S. (2005). A communication paradigm for hybrid sensor/actuator networks*. International Journal of Wireless Information Networks, 12(1), 47–59.

    Article  Google Scholar 

  19. Zorzi, M., & Rao, R. R. (2003). Geographic random forwarding (GeRaF) for ad hoc and sensor networks: Energy and latency performance. IEEE Transactions on Mobile Computing, 2(4), 349–365.

    Article  Google Scholar 

  20. Liu, S., Fan, K.W., & Sinha, P. (2007). Cmac: An energy efficient mac layer protocol using convergent packet forwarding for wireless sensor networks. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007. SECON ’07 (pp .11–20). https://doi.org/10.1109/SAHCN.2007.4292813.

  21. Biswas, S., & Morris, R. (2005). Exor: Opportunistic multi-hop routing for wireless networks. In Proceedings of ACM SIGCOMM.

  22. Rossi, M., & Zorzi, M. (2007). Integrated cost-based mac and routing techniques for hop count forwarding in wireless sensor networks. IEEE Transactions onIEEE Transactions onIEEE Transactions on Mobile Computing, 6(4), 434–448. https://doi.org/10.1109/TMC.2007.54.

    Article  Google Scholar 

  23. Rossi, M., Zorzi, M., & Rao, R. R. (2008). Statistically assisted routing algorithms (SARA) for hop count based forwarding in wireless sensor networks. Journal of Wireless Networks, 14(1), 55–70.

    Article  Google Scholar 

  24. Mitton, N., Simplot-Ryl, D., & Stojmenovic, I. (2009). Guaranteed delivery for geographical anycasting in wireless multi-sink sensor and sensor-actor networks. In Proceedings of 28th annual IEEE conference on computer communications (INFOCOM 2009).

  25. Kim Joohwan SNB Lin Xiaojun. (2011). Optimal anycast technique for delay-sensitive energy-constrained asynchronous sensor networks. IEEE/ACM Transactions on Networking, 19(2), 484–497.

    Article  Google Scholar 

  26. Manjeshwar, A., & Agrawal, D. (2002). Apteen: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless. In Proceedings of IEEE IPDPS

  27. Srisathapornphat, C., Jaikaeo, C., & Shen, C. C. (2000). Sensor information networking architecture. In 2000 international workshops on parallel processing, 2000. Proceedings (pp. 23–30). IEEE.

  28. Lee, B. D., & Lim, K. H. (2012). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387.

    Article  Google Scholar 

  29. Lee, B. D., & Lim, K. H. (2011). An energy-efficient hybrid data-gathering protocol based on the dynamic switching of reporting schemes in wireless sensor networks. IEEE Systems Journal, 6(3), 378–387.

    Google Scholar 

  30. Bhuiyan, M. Z. A., Wu, J., Wang, G., Wang, T., & Hassan, M. M. (2017). e-sampling: Event-sensitive autonomous adaptive sensing and low-cost monitoring in networked sensing systems. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 12(1), 1–29.

    Article  Google Scholar 

  31. Nagarajan, R., & Dhanasekaran, R. (2018). Energy efficient data transmission approaches for wireless industrial automation. Current Signal Transduction Therapy, 13(1), 37–43.

    Article  Google Scholar 

  32. Alsheikh, M. A., Lin, S., Niyato, D., & Tan, H. P. (2014). Machine learning in wireless sensor networks: Algorithms, strategies, and applications. IEEE Communications Surveys & Tutorials, 16(4), 1996–2018.

    Article  Google Scholar 

  33. Guo, P., Jiang, T., Zhang, Q., & Zhang, K. (2012). Sleep scheduling for critical event monitoring in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 23(2), 345–352. https://doi.org/10.1109/TPDS.2011.165.

    Article  Google Scholar 

  34. Hu, Y., Niu, Y., Lam, J., & Shu, Z. (2017). An energy-efficient adaptive overlapping clustering method for dynamic continuous monitoring in wsns. IEEE Sensors Journal, 17(3), 834–847.

    Article  Google Scholar 

  35. Bandyopadhyay, S., & Coyle, E. J. (2003). An energy efficient hierarchical clustering algorithm for wireless sensor networks. In INFOCOM 2003. Twenty-second annual joint conference of the IEEE computer and communications (Vol. 3, pp. 1713–1723). IEEE Societies. https://doi.org/10.1109/INFCOM.2003.1209194.

  36. Gandham, S., Zhang, Y., & Huang, Q. (2008). Distributed time-optimal scheduling for convergecast in wireless sensor networks. Computer Networks, 52(3), 610–629.

    Article  Google Scholar 

  37. Ma, J., Lou, W., Wu, Y., Yang Li, X., & Chen, G. (2009). Energy efficient tdma sleep scheduling in wireless sensor networks. In Proceedings of IEEE INFOCOM

  38. Elson, J., Girod, L., & Estrin, D. (2002). Fine-grained network time synchronization using reference broadcasts. In Proceedings of USENIX/ACM OSDI.

Download references

Funding

There are no funding source for this work.

Author information

Authors and Affiliations

Authors

Contributions

DS: Conceptualization, coding, Implementation, and result generation. SVR: Supervision, guiding and monitoring.

Corresponding author

Correspondence to Debanjan Sadhukhan.

Ethics declarations

Conflict of interest

There are no conflict of interest for this manuscript.

Code availability

The codes are available and can be provided only by request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, D., Rao, S.V. Minimizing Critical Event Delay and Maximizing Lifetime in a Hybrid Data-Gathering Protocol for WSNs. Wireless Pers Commun 118, 1–17 (2021). https://doi.org/10.1007/s11277-020-07999-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-020-07999-4

Keywords

Navigation