Skip to main content
Log in

A COMBINATORIAL STUDY OF AFFINE SCHUBERT VARIETIES IN THE AFFINE GRASSMANNIAN

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( {\overline{\mathrm{X}}}_{\uplambda} \) be the closure of the I-orbit \( {\overline{\mathrm{X}}}_{\uplambda} \) in the affine Grassmanian Gr of a simple algebraic group G of adjoint type, where I is the Iwahori subgroup and λ is a coweight of G. We find a simple algorithm which describes the set Ψ(λ) of all I-orbits in \( {\overline{\mathrm{X}}}_{\uplambda} \) in terms of coweights. We introduce R-operators (associated to positive roots) on the coweight lattice of G, which exactly describe the closure relation of I-orbits. These operators satisfy Braid relations generically on the coweight lattice. We also establish a duality between the set Ψ(λ) and the weight system of the level one affine Demazure module of \( {}^L\tilde{\mathfrak{g}} \) indexed by λ, where \( {}^L\tilde{\mathfrak{g}} \) is the affine Kac–Moody algebra dual to the affine Kac–Moody Lie algebra \( \tilde{\mathfrak{g}} \) associated to the Lie algebra \( \mathfrak{g} \) of G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Anderson, A polytope calculus for semisimple groups, Duke Math. J. 116 (2003), no. 3, 567–588.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231. Springer, New York, 2005.

  3. A. Beilinson, V. Drinfeld, Quantization of Hitchin’s integrable system and Hecke eigensheaves, www.math.uchicago.edu/mitya/langlands.

  4. И. Н. Бернштейн, И. М. Гельфанд, С. И. Гельфанд, Клетки Шуберта и когомологии пространств G/P, УМН 28 (1973), вып. 3(171), 3–26. Engl. transl.: J. Bernstein, I. M. Gelfand, S. I. Gelfand, Schubert cells and cohomologies of spaces G/P, Russian Math. Surveys 28 (1973), no. 3, 1–26.

  5. N. Bourbaki, Lie Algebras and Lie Groups, Chapters 4–6, Springer, Berlin, 2002.

  6. D. Bernard, J. Thierry-Mieg, Level one representations of the simple affine Kac–Moody algebras in their homogeneous gradations, Comm. Math. Phys. 111 (1987), no. 2, 181–246.

    Article  MathSciNet  MATH  Google Scholar 

  7. I. Frenkel, Two constructions of affine Lie algebra representations and boson-fermion correspondence in quantum field theory, J. Funct. Anal. 44 (1981), no. 3, 259–327.

    Article  MathSciNet  MATH  Google Scholar 

  8. I. Frenkel, V. Kac, Basic representations of affine Lie algebras and dual resonance models, Invent. Math. 62 (1980/81), no. 1, 23–66.

    Article  MathSciNet  MATH  Google Scholar 

  9. I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and Applied Mathematics, Vol. 134. Academic Press, Boston, MA, 1988.

  10. J. Humphreys, Introduction to Lie Algebras and Representation Theory, 3d printing, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1980.

  11. J. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol., 29, Cambridge University Press, Cambridge, 1990.

  12. N. Iwahori and H. Matsumoto, On some Bruhat decomposition and the structure of the Hecke rings of p-adic Chevalley groups, Inst. Hautes Études Sci. Publ. Math. (1965), no. 25, 5–48.

  13. B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. 116 (2003), no. 2, 299–318.

    Article  MathSciNet  MATH  Google Scholar 

  14. B. Ion, A weight multiplicity formula for Demazure modules, Int. Math. Res. Not. (2005), no. 5, 311–323.

  15. B. Ion, Nonsymmetric Macdonald polynomials and matrix coefficients for unramified principal series, Adv. in Math. 201 (2006), 36–62.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Ion, Standard bases for affine parabolic modules and nonsymmetric Macdonald polynomials, J. Algebra 319 (2008), no. 8, 3480–3517.

    Article  MathSciNet  MATH  Google Scholar 

  17. V. Kac, Infinite-dimensional Lie Algebras, 3rd edn., Cambridge University Press, Cambridge, 1990.

  18. J. Kamnitzer, Mirković–Vilonen cycles and polytopes, Ann. of Math. (2) 171 (2010), no. 1, 245–294.

  19. M. Kashiwara, T. Tanisaki, Parabolic Kazhdan–Lusztig polynomials and Schubert varieties, J. Algebra 249 (2002), no. 2, 306–325.

    Article  MathSciNet  MATH  Google Scholar 

  20. S. Kumar, Kac–Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.

  21. T. Lam, M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math. 204 (2010), no. 1, 49–90.

    Article  MathSciNet  MATH  Google Scholar 

  22. I. G. Macdonald, Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, Vol. 157, Cambridge University Press, Cambridge, 2003.

  23. I. Mirković, K. Vilonen, Geometric Langlands duality and representations of algebraic groups over commutative rings, Ann. of Math. (2) 166 (2007), no. 1, 95–143.

  24. J. Stembridge, The partial order of dominant weights, Adv. in Math. 136 (1998), no. 2, 340–364.

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Steinberg, Lectures on Chevalley Groups, Iniversity Lecture Series, Vol. 66, American Mathematical Society, Providence, RI, 2016.

  26. X. Zhu, An introduction to affine Grassmannians and the geometric Satake equivalence, in: Geometry of Moduli Spaces and Representation Theory, IAS/Park City Math. Ser., Vol. 24, Amer. Math. Soc., Providence, RI, 2017, pp. 59–154.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MARC BESSON.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BESSON, M., HONG, J. A COMBINATORIAL STUDY OF AFFINE SCHUBERT VARIETIES IN THE AFFINE GRASSMANNIAN. Transformation Groups 27, 1189–1221 (2022). https://doi.org/10.1007/s00031-020-09634-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09634-9

Navigation