Skip to main content
Log in

Effect of Modified Nanoclay Surface Supported Nickel Catalyst on Carbon Dioxide Reforming of Methane

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The activity and stability of modified nanoclays surface supported nickel (Ni/NC-x) catalyst were investigated and compared to unmodified nanoclay surface supported nickel (Ni/NC) catalyst in dry reforming reaction (500–800 °C). The nickel metal was loaded on modified nanoclay surface with different alkylammonium modifiers—trimethylstearyl ammonium (NC-T), methyl dihydroxy-ethyl hydrogenated tallow ammonium (NC-M), aminopropyltriethoxysilane and octadecylamine (NC-A), and dimethyl dialkyl amine (NC-D) by using the impregnation method. As a results, the surface area and pore volume of Ni/NC-x catalysts were 1.70–3.96 and 2.33–4.33 times higher than that of Ni/NC catalyst, respectively. A longer chain of alkylammonium ions of modifier enhanced the intercalation of the modifier molecules into the interlayer of the nanoclay. Among these catalysts, the highest surface area of Ni/NC-T catalyst could facilitate the Ni metal dispersion and smaller size of NiO, resulting in the stronger interaction between Ni and NC-T support. It then gave the highest CO2 and CH4 conversions and H2/CO ratio. In addition, H2 and CO yields of Ni/NC-T catalyst were 1.21 and 1.20 times higher than that of Ni/NC catalyst, respectively. Moreover, the modified nanoclays surface supported nickel catalyst could reduce the carbon formation during the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. EPA U. (2019). Inventory of US greenhouse gas emissions and sinks: 1990–2017. US Environmental Protection Agency.

  2. Elvidge CD, Bazilian MD, Zhizhin M, Ghosh T, Baugh K, Hsu FC (2018) The potential role of natural gas flaring in meeting greenhouse gas mitigation targets. Energy Strategy Rev 20:156–162

    Article  Google Scholar 

  3. Horlyck J, Lewis S, Amal R, Scott J (2018) The Impact of La Doping on Dry Reforming Ni-Based Catalysts Loaded on FSP-Alumina. Top Catal 61:1842–1855

    Article  CAS  Google Scholar 

  4. Pizzolitto C, Pupulin E, Menegazzo F, Ghedini E, Michele DI, A, Mattarelli M, Cruciani G, Signoretto M, (2019) Nickel based catalysts for methane dry reforming: Effect of supports on catalytic activity and stability. Int J Hydrogen Energy 44:28065–28076

    Article  CAS  Google Scholar 

  5. Donphai W, Phichairatanaphong O, Klysubun W, Chareonpanich M (2018) Hydrogen and carbon allotrope production through methane cracking over Ni/bimodal porous silica catalyst: Effect of nickel precursor. Int J Hydrogen Energy 43:21798–21809

    Article  CAS  Google Scholar 

  6. Abdulrasheed A, Jalil AA, Gambo Y, Ibrahim M, Hambali HU, Hamid MYS (2019) A review on catalyst development for dry reforming of methane to syngas: recent advances. Renew Sust Energ Rev 108:175–193

    Article  CAS  Google Scholar 

  7. Lian J, Fang X, Liu W, Huang Q, Sun Q, Wang H, Wang X, Zhou W (2017) Ni Supported on LaFeO3 Perovskites for Methane Steam Reforming: On the Promotional Effects of Plasma Treatment in H2– Ar Atmosphere. Top Catal 60:831–842

    Article  CAS  Google Scholar 

  8. Witoon T, Numpilai T, Phongamwong T, Donphai W, Boonyuen W, Warakulwit C, Chareonpanich M, Limtraku J (2018) Enhanced activity, selectivity and stability of a CuO-ZnO-ZrO2 catalyst by adding graphene oxide for CO2 hydrogenation to methanol. Chem Eng J 334:1781–1791

    Article  CAS  Google Scholar 

  9. Blanco AAG, Furlong OJ, Stacchiola DJ, Sapag K, Nazzarro MS (2019) Porous MoxCy/SiO2 Material for CO2 Hydrogenation. Top Catal 62:1026–1034

    Article  Google Scholar 

  10. Shi B, Liao Y, Callihan ZJ, Shoopman BT, Luo M (2020) Carbon-Carbon bond formation during Fe catalyzed Fischer-Tropsch synthesis. Appl Catal A-Gen 602:117607

    Article  CAS  Google Scholar 

  11. Pan C, Guo Z, Dai H, Ren R, Chu W (2020) Anti-sintering mesoporous Ni–Pd bimetallic catalysts for hydrogen production via dry reforming of methane. Int J Hydrogen Energy 45:16133–16143

    Article  CAS  Google Scholar 

  12. Jawad A, Rezaei F, Rownaghi AA (2020) Highly efficient Pt/Mo-Fe/Ni-based Al2O3-CeO2 catalysts for dry reforming of methane. Catal Today 350:80–90

    Article  CAS  Google Scholar 

  13. Ruocco C, Caprariis B, Palma V, Petrullo A, Ricca A, Scarsella M, De Filippis P (2019) Methane dry reforming on Ru perovskites, AZrRuO3: Influence of preparation method and substitution of A cation with alkaline earth metals J CO2 Util 30:222–231.

  14. Zhang G, Liu J, Xu Y, Sun YJ (2018) A review of CH4CO2 reforming to synthesis gas over Ni-based catalysts in recent years (2010–2017). Int J Hydrogen Energy 43:15030–15054

    Article  CAS  Google Scholar 

  15. Jabbour K, Saad A, Inaty L, Davidson A, Massiani P, El Hassan N (2019) Ordered mesoporous Fe-Al2O3 based-catalysts synthesized via a direct “one-pot” method for the dry reforming of a model biogas mixture. Int J Hydrogen Energy 44:14889–14907

    Article  CAS  Google Scholar 

  16. Wang Z, Hu X, Dong D, Parkinson G, Li CZJ (2017) Effects of calcination temperature of electrospun fibrous Ni/Al2O3 catalysts on the dry reforming of methane. Fuel Process Technol 155:246–251

    Article  CAS  Google Scholar 

  17. Yan X, Hu T, Liu P, Li S, Zhao B, Zhang Q, Jiao W, Chen S, Wang P, Lu JJ (2019) Highly efficient and stable Ni/CeO2-SiO2 catalyst for dry reforming of methane: Effect of interfacial structure of Ni/CeO2 on SiO2. Appl Catal B-Environ 246:221–231

    Article  CAS  Google Scholar 

  18. Bach VR, De Camargo AC, De Souza TL, Cardozo-Filho L, Alves HJJ (2019) Dry reforming of methane over Ni/MgO–Al2O3 catalysts: Thermodynamic equilibrium analysis and experimental application. Int J Hydrogen Energy 45:5252–5263

    Article  Google Scholar 

  19. Mourhly A, Kacimi M, Halim M, Arsalane SJ (2018) New low cost mesoporous silica (MSN) as a promising support of Ni-catalysts for high-hydrogen generation via dry reforming of methane (DRM). Int J Hydrogen Energy 45:11449–11459

    Article  Google Scholar 

  20. Shin SA, Noh YS, Hong GH, Park JI, Song HT, Lee KY, Moon DJ (2018) Dry reforming of methane over Ni/ZrO2-Al2O3 catalysts: Effect of preparation methods. J Taiwan Inst Chem Eng 90:25–32

    Article  CAS  Google Scholar 

  21. Lu M, Fang J, Han L, Faungnawakij K, Li H, Cai S, Shi L, Jiang H, Zhang D (2018) Coke-resistant defect-confined Ni-based nanosheet-like catalysts derived from halloysites for CO2 reforming of methane. Nanoscale 10:10528–10537

    Article  CAS  Google Scholar 

  22. Dai H, Peixin Yu, Liu H, Xiong S, Xiao X, Deng J, Huanga L (2020) Ni-Based catalysts supported on natural clay of attapulgite applied in the dry reforming of methane reaction. New J Chem 44:16101–16109

    Article  CAS  Google Scholar 

  23. Mondal D, Mollick MMR, Bhowmick B, Maity D, Bain MK, Rana D, Mukhopadhyay A, Dana K, Chattopadhyay D (2013) Effect of poly (vinyl pyrrolidone) on the morphology and physical properties of poly (vinyl alcohol)/sodium montmorillonite nanocomposite films. Prog Nat Sci 23:579–587

    Article  Google Scholar 

  24. Uddin F (2018) Montmorillonite: An introduction to properties and utilization. Current Topics in the Utilization of Clay in Industrial and Medical Applications. https://doi.org/10.5772/intechopen.77987.Published:September12th

    Article  Google Scholar 

  25. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  CAS  Google Scholar 

  26. Xi Y, Frost RL, He H, Kloprogge T, Bostrom T (2005) Modification of Wyoming Montmorillonite Surfaces Using a Cationic Surfactant. Langmuir 21:8675–8680

    Article  CAS  Google Scholar 

  27. Kozak M, Domka L (2004) Adsorption of the quaternary ammonium salts on montmorillonite. J Phys Chem Solids 65:441–445

    Article  CAS  Google Scholar 

  28. de Paiva LB, Morales AR, Díaz FR (2008) Organoclays: Properties, preparation and applications. Appl Clay Sci 42:8–24

    Article  Google Scholar 

  29. Gieseking JE (1939) The mechanism of cation exchange in the montmorillonite–beidellite–nontronite type of clay minerals. Soil Sci 47:1–14

    Article  CAS  Google Scholar 

  30. Kiatphuengporn S, Chareonpanich M, Limtrakul J (2014) Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe–Cu catalysts for CO2 hydrogenation. Chem Eng J 240:527–533

    Article  CAS  Google Scholar 

  31. Pugazhenthi G, Suresh K, Kumar RV, Kumar M, Surin RR (2018) A Simple Sonication Assisted Solvent Blending Route for Fabrication of Exfoliated Polystyrene (PS)/Clay Nanocomposites: Role of Various Clay Modifiers. Mater Today Proceedings 5:13191–13210

    Article  CAS  Google Scholar 

  32. Vijayan P, Puglia D, Vijayan P, Kenny JM, Thomas S (2017) The role of clay modifier on cure characteristics and properties of epoxy/clay/carboxylterminated poly(butadiene-co-acrylonitrile) (CTBN) hybrid. Mater Technol 32:171–177

    Article  Google Scholar 

  33. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of Clay Science, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  34. Zhao Q, Burns SE (2012) Microstructure of Single Chain Quaternary Ammonium Cations Intercalated into Montmorillonite: A Molecular Dynamics Study. Langmuir 28:16393–16400

    Article  CAS  Google Scholar 

  35. Borralleras P, Segura I, Arand MAG, Aguado A (2019) Influence of experimental procedure on d-spacing measurement by XRD of montmorillonite clay pastes containing PCE-based superplasticizer. Cem Concr Res 116:266–272

    Article  CAS  Google Scholar 

  36. Ahmed A, Chaker Y, El Belarbi H, Abbas O, Chotard JN, Abassi HB, Van Nhien AN, El Hadri M, Bresson S (2018) XRD and ATR/FTIR investigations of various montmorillonite clays modified by monocationic and dicationic imidazolium ionic liquids. J Mol Struct 1173:653–664

    Article  CAS  Google Scholar 

  37. Tanggarnjanavalukul C, Donphai W, Witoon T, Chareonpanich M, Limtrakul J (2015) Deactivation of nickel catalysts in methane cracking reaction: Effect of bimodal meso–macropore structure of silica support. Chem Eng J 262:364–371

    Article  CAS  Google Scholar 

  38. Min JE, Lee YJ, Park HG, Zhang C, Jun KW (2015) Carbon dioxide reforming of methane on Ni–MgO–Al2O3 catalysts prepared by sol–gel method: Effects of Mg/Al ratios. J Ind Eng Chem 26:375–383

    Article  CAS  Google Scholar 

  39. Moronta A, Iwasa N, Fujita SI, Himokawabe MS, Arai M (2005) Nickel catalysts supported on MgO/smectite-type nanocomposites for methane reforming. Clays Clay Miner 53:622–630

    Article  CAS  Google Scholar 

  40. Gamba O, Moreno S, Rl M (2011) Catalytic performance of Ni-Pr supported on delaminated clay in the dry reforming of methane. Int J Hydrog Energy 36:1540–1550

    Article  CAS  Google Scholar 

  41. Liu H, Da Costa P, BelHadjltaief H, Benzina M, G´alvez ME, (2018) Mg-promotion of Ni natural clay-supported catalysts for dry reforming of methane. RSC Adv 8:19627–19634

    Article  CAS  Google Scholar 

  42. Hongrui L, BelHadjltaief H, Benzina M, G´alvez ME, Da Costa P, (2019) Natural clay based nickel catalysts for dry reforming of methane: On the effect of support promotion (La, Al, Mn). Int J Hydrog Energy 44:246–255

    Article  Google Scholar 

  43. Donphai W, Chareonpanich M, Limtrakul J (2014) Effect of Ni-CNTs/Mesocellular silica composite catalysts on carbon dioxide reforming of methane. Appl Catal A-Gen 475:16–26

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Thailand Advanced Institute of Science and Technology (TAIST), National Science and Technology, Kasetsart University under TAIST Tokyo Tech program, National Science and Technology Development Agency (NSTDA), and the National Nanotechnology Center (NANOTEC), NSTDA, Ministry of Science and Technology, Thailand, through its program of Research Network NANOTEC (RNN), National Nanotechnology Center (P2051171), and the Program Management Unit for Human Resources & Institutional Development, Research and Innovation (B05F630097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Waleeporn Donphai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3401 KB)

Supplementary file2 (DOCX 2942 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaisamphao, J., Kiatphuengporn, S., Faungnawakij, K. et al. Effect of Modified Nanoclay Surface Supported Nickel Catalyst on Carbon Dioxide Reforming of Methane. Top Catal 64, 431–445 (2021). https://doi.org/10.1007/s11244-020-01403-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01403-y

Keywords

Navigation