Skip to main content
Log in

On lineability of families of non-measurable functions of two variable

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

A function \(F:\mathbb {R}^2\rightarrow \mathbb {R}\) is sup-measurable if, for each (Lebesgue) measurable function \(f:\mathbb {R}\rightarrow \mathbb {R}\), the Carathéodory superposition \(F_f:\mathbb {R}\rightarrow \mathbb {R}\) given by \(F_f: x\mapsto F(x,f(x))\) is measurable. The existence of non-measurable sup-measurable functions is independent of ZFC. We prove, assuming CH, that the family of all non-measurable sup-measurable functions \(F:\mathbb {R}^2\rightarrow \mathbb {R}\) (plus the zero function) contains a linear vector space of dimension \(2^\mathfrak {c}\). A function \(F:\mathbb {R}^2\rightarrow \mathbb {R}\) is separately measurable if all its vertical and horizontal sections are measurable. In the second part of this note we show that the family of non-measurable separately measurable functions is \(2^\mathfrak {c}\)-lineable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aron, R.M., Bernal-González, L., Pellegrino, D.M., Seoane-Sepúlveda, J.B.: Lineability: The Search for Linearity in Mathematics. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton (2016)

    Google Scholar 

  2. Aron, R.M., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Lineability and spaceability of sets of functions on \({\mathbb{R}}\). Proc. Am. Math. Soc. 133(3), 795–803 (2005)

    Article  MathSciNet  Google Scholar 

  3. Balcerzak, M.: Some remarks on sup-measurability. Real Anal. Exchange 17(2), 597–607 (1992)

    Article  MathSciNet  Google Scholar 

  4. Balcerzak, M., Ciesielski, K.: On the sup-measurable functions problem. Real Anal. Exchange 23(2), 787–797 (1998)

    Article  MathSciNet  Google Scholar 

  5. Bartoszewicz, A., Bienias, M., Gła̧b, S.: Independent Bernstein sets and algebraic constructions. J. Math. Anal. Appl. 393, 138–143 (2012)

  6. Bartoszewicz, A., Gıa̧b, S., Pellegrino, D., Seoane-Sepúlveda, J.B.: Algebrability, non-linear properties, and special functions. Proc. Am. Math. Soc. 141(10), 3391–3402 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bernal-González, L., Pellegrino, D.M., Seoane-Sepúlveda, J.B.: Linear subsets of nonlinear sets in topological vector spaces. Bull. Am. Math. Soc. (N.S.) 51(1), 71–130 (2014)

  8. Bernal-González, L., Muñoz-Fernández, G.A., Rodriguez-Vidanes, D.L., Seoane-Sepúlveda, J.B.: Algebraic genericity within the class of sup-measurable functions. J. Math. Anal. Appl. 483(1), 16 (2020). (Article ID 123576)

  9. Bruckner, A.: Differentiation of Real Functions, Lecture Notes in Math., vol. 659. Springer (1978)

  10. Carathéodory, C.: Vorlesungen über reelle Funktionen. Leipzig-Berlin (1927)

  11. Ciesielski, K.: Set Theory for the Working Mathematician. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  12. Ciesielski, K.C., Gámez-Merino, J.L., Natkaniec, T., Seoane-Sepúlveda, J.B.: On functions that are almost continuous and perfectly everywhere surjective but not Jones. Lineability and additivity. Topol. Appl. 235, 73–82 (2018)

    Article  MathSciNet  Google Scholar 

  13. Ciesielski, K.C., Rosenblatt, J.: Restricted continuity and a theorem of Lusin. Colloq. Math. 135(2), 211–225 (2014)

    Article  MathSciNet  Google Scholar 

  14. Davis, R.O.: Separate approximate continuity implies measurability. Proc. Camb. Philos. Soc. 73, 461–465 (1973)

    Article  MathSciNet  Google Scholar 

  15. Davis, R.O., Dravecký, J.: On the measurability of functions of two variables. Mat. Časopis 23, 285–289 (1973)

    MathSciNet  Google Scholar 

  16. Grande, Z.: La mesurabilité des fonctions de deux variables. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22, 657–661 (1974)

    MathSciNet  Google Scholar 

  17. Grande, Z.: Semiéquicontinuité approximative et mesurabilité. Colloq. Math. 45, 133–135 (1981)

    Article  MathSciNet  Google Scholar 

  18. Grande, Z., Lipiński, J.S.: Un exemple d’une fonction sup-mesurable qui n’est pas mesurable. Colloq. Math. 39, 77–79 (1978)

    Article  MathSciNet  Google Scholar 

  19. Jarník, V.: Sur la dérivabilité des fonctions continues. Spisy Privodov. Fak. Univ. Karlovy 129(2), 3–9 (1934)

    Google Scholar 

  20. Jech, T.: Set Theory. The third millennium edition, revised and expanded. Springer, Berlin (2003)

  21. Fichtenholz, G., Kantorovitch, L.: Sur les opérations linéaires dans l’espace des fonctions bornees. Stud. Math. 5, 69–98 (1934)

    Article  Google Scholar 

  22. Kharazishvili, A.B.: Some questions from the theory of invariant measures. Soobshch. Akad. Nauk Gruz. SSR 100, 533–536 (1980). (in Russian)

    Google Scholar 

  23. Kharazishvili, A.B.: Sup-measurable and weakly sup-measurable mappings in the theory of ordinary differential equations. J. Appl. Anal. 3, 211–225 (1997)

    MathSciNet  Google Scholar 

  24. Kharazishvili, A.B.: Strange Functions in Real Analysis, 3rd edn. CRC Press, Boca Raton (2018)

    Google Scholar 

  25. Krasnosel’skiĭ, M.A., Pokrovskiĭ, A.V.: Systems with Hysteresis. Springer, Berlin (1988)

    Google Scholar 

  26. Kuratowski, K.: Topology, vol. 1. Academic Press, New York (1966)

    Google Scholar 

  27. Laczkovich, M., Miller, A.W.: Measurability of functions with approximately continuous vertical sections and measurable horizontal sections. Colloq. Math. 69(2), 299–308 (1995)

    Article  MathSciNet  Google Scholar 

  28. Lipiński, J.S.: On measurability of functions of two variables. Bull. Acad. Polon. Math. Sci. Sér. Sci. Math. Astronom. Phys. 20, 131–135 (1972)

    MathSciNet  Google Scholar 

  29. Lusin, N.N.: Theory of Functions of a Real Variable, 2nd edn. National Educational Publishers, Moscow (1948). (in Russian)

    Google Scholar 

  30. Miller, A.: Special subsets of the real line. In: Kunen, K., Vaughan, J.E. (eds.) Handbook of Set-Theoretic Topology, pp. 201–233. North-Holland, Amsterdam (1984)

    Chapter  Google Scholar 

  31. Rosłanowski, A., Shelah, S.: Measurable creatures. Isr. J. Math. 151, 61–110 (2006)

    Article  Google Scholar 

  32. Sierpiński, W.: Sur un probléme concernant les ensembles mesurables superficiellement. Fund. Math. 1, 112–115 (1920)

    Article  Google Scholar 

  33. Sierpiński, W.: Sur l’hypothése du continue (\(2^{\aleph _0}=\aleph _1\)). Fund. Math. 5, 177–187 (1924)

    Article  Google Scholar 

  34. Zahorski, Z.: Sur la premiére dérivée. Trans. Am. Math. Soc. 69, 1–54 (1950)

    Google Scholar 

Download references

Acknowledgements

We would like to express our gratitude to Professors Krzysztof C. Ciesielski and Juan B. Seoane–Sepúlveda, and anonymous reviewers for their help in improving this paper’s presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Natkaniec.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Natkaniec, T. On lineability of families of non-measurable functions of two variable. RACSAM 115, 33 (2021). https://doi.org/10.1007/s13398-020-00980-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00980-7

Keywords

Mathematics Subject Classification

Navigation