Skip to main content
Log in

Enhancement Propagation of Protocorms in Orchid (Cymbidium tracyanum L. Castle) by Cold Atmospheric Pressure Air Plasma Jet

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Propagation of orchid (Cymbidium tracyanum L. Castle) treated by using an air cold atmospheric pressure plasma jet at room temperature was investigated. The peak-to-peak voltage discharge and flow rate of the air atmospheric pressure plasma jet were set at 10.5 kV and 10 L/min, respectively. The constituent particles of the air cold atmospheric pressure plasma jet were revealed by optical emission spectroscopy. At the end of the jet nozzle, the constituent particles were observed, such as hydroxyl radical ˙OH, N2 first negative system (N2 1 −), N2s positive system (N2 2 +), and atomic oxygen. The average size, average number of buds, fresh and dry weights simultaneously increased by cold air plasma treatment compared with the control ones. The highest positive effects of treated protocorms on average size, average number of buds, fresh and dry weight were significantly improved by 238.2, 475.9, 85.6, and 152.5%, respectively. The transmission electron microscope showed the cytoplasmic cell wall in orchid protocorm disturbed by air cold plasma. Thus, the effects of constituent particles of air plasma might attack in the cell wall of protocorm leading to cell loosening, which improved elongation and released bud dormancy. These results indicated that the propagation of orchid protocorms depended on the effects of air cold plasma treatment with different plasma time durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia L’H (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226(1–2):1–21

    Article  CAS  PubMed  Google Scholar 

  2. Liu HX, Chen JR, Yang LQ, Zhou Y (2008) Long-distance oxygen plasma sterilization: effects and mechanism. Appl Surf Sci 254:1815–1821

    Article  CAS  Google Scholar 

  3. Zhang X, Huang J, Liu X, Peng L, Guo L, Lv G, Chen W, Feng K, Yang S-Z (2009) Treatment of Streptococcus mutans bacteria by a needle plasma. J Appl Phys 105(6):063302–063307

    Article  Google Scholar 

  4. Norberg SA, Johnsen E, Kushner MJ (2015) Helium atmospheric pressure plasma jets touching dielectric and metal surfaces. J Appl Phys 118(1):013301

    Article  Google Scholar 

  5. Dubinov AE, Lazarenko EM, Selemir VD (2000) Effect of glow discharge air plasma on grain crops seed. IEEE Trans Plasma Sci 28(1):180–183

    Article  Google Scholar 

  6. Volin JC, Denes FS, Young RA, Park T (2000) Modification of seed germination performance through cold plasma chemistry technology. Crop Sci 40(6):1706–1718

    Article  CAS  Google Scholar 

  7. Yin MQ, Huang MJ, Ma BZ, Ma TC (2005) Stimulating effects of seed treatment by magnetized plasma on tomato growth and yield. Plasma Sci Technol 7(6):3143–3147

    Article  Google Scholar 

  8. Puac N, Gherardi M, Shiratani M (2017) Plasma agriculture: a rapidly emerging field. Plasma Process Polym 15:00174

    Google Scholar 

  9. Ito M, Ohta T, Hori M (2012) Plasma agriculture. J Korean Phys Soc 60:937–943

    Article  Google Scholar 

  10. Graves DB (2014) Low temperature plasma biomedicine: a tutorial review. Phys Plasmas 21:080901

    Article  Google Scholar 

  11. Sousa JS, Niemi K, Cox LJ, Algwari QTh, Gans T, O’ Connell D (2011) Cold atmospheric pressure plasma jets as sources of singlet delta oxygen for biomedical applications. J Appl Phys 109(12):123302

    Article  Google Scholar 

  12. Zhou R, Zhang X, Zhuang J, Yang S, Bazaka K, Ostrikov KK (2016) Effects of atmospheric-pressure N2, He, air, and O2 microplasmas on mung bean seed germination and seedling growth. Sci Rep 6:32603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zahoranová A, Henselová M, Hudecová D, Kaliňáková B, Kováčik D, Medvecká V, Černák M (2016) Effect of cold atmospheric pressure plasma on the wheat seedlings vigor and on the inactivation of microorganisms on the seeds surface. Plasma Chem Plasma Process 36:397

    Article  Google Scholar 

  14. Dobrin D, Magureanu M, Mandache NB, Ionita MD (2015) The effect of non-thermal plasma treatment on wheat germination and early growth. Innov Food Sci Emerg Technol 29:255

    Article  CAS  Google Scholar 

  15. Bormashenko E, Shapira Y, Grynyov R, Whyman G, Bormashenko Y, Drori E (2015) Interaction of cold radiofrequency plasma with seeds of beans (Phaseolus vulgaris). J Exp Bot 66:4013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bormashenko E, Grynyov R, Bormashenko Y, Drori E (2012) Cold radiofrequency plasma treatment modifies wettability and germination speed of plant seeds. Sci Rep 2:741

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li L, Jiang JF, Li JG, Shen MC, He X, Shao HL, Dong YH (2014) Effects of cold plasma treatment on seed germination and seedling growth of soybean. Sci Rep 4:5859–5865

    Article  CAS  Google Scholar 

  18. Alves Junior C, de Oliveira Vitoriano J, da Silva DL, de Lima Farias M, de Lima Dantas NB (2016) Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma. Sci Rep 6:33722

    Article  PubMed  PubMed Central  Google Scholar 

  19. Jiang J, He X, Li L, Li JG, Shao HL, Xu QL, Ye RH, Dong YH (2014) Effect of cold plasma treatment on seed germination and growth of wheat. Plasma Sci Technol 16:54–58

    Article  Google Scholar 

  20. Šerá V, Stránák B, Šerý M, Tichý M, Špatenka P (2008) Germination of Chenopodium album in response to microwave plasma treatment. Plasma Sci Technol 10(4):506–511

    Article  Google Scholar 

  21. Sera B, Spatenka P, Sery M, Vrchotova N, Hruskova I (2010) Influence of plasma treatment on wheat and oat germination and early growth. IEEE Trans Plasma Sci 3:2963–2968

    Article  Google Scholar 

  22. Tong J, He R, Zhang X, Zhan R, Chen W, Yang S (2014) Effects of atmospheric pressure air plasma pretreatment on the seed germination and early growth of Andrographis paniculata. Plasma Sci Technol 16(3):260–266

    Article  CAS  Google Scholar 

  23. Lotfy K, Al-Harbi NA, Abd El-Raheem H (2019) Cold atmospheric pressure nitrogen plasma jet for enhancement germination of wheat seeds. Plasma Chem Plasma Process 39:897–912

    Article  CAS  Google Scholar 

  24. Misra NN, Moiseev T, Patil S, Pankaj SK, Bourke P, Mosnier JP, Keener KM, Cullen PJ (2014) Cold plasma in modified atmospheres for post-harvest treatment of strawberries. Food Bioprocess Technol 7:3045–3054

    Article  CAS  Google Scholar 

  25. Sera B, Sery M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37:207–221

    Article  CAS  Google Scholar 

  26. Stolárik T, Henselová M, Martinka M, Novák O, Zahoranová A, Černák M (2015) Effect of low-temperature plasma on the structure of seeds, growth and metabolism of endogenous phytohormones in pea (Pisum sativum L.). Plasma Chem Plasma Process 35(4):659–676

    Article  Google Scholar 

  27. Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45(26):263001

    Article  Google Scholar 

  28. Muller K, Linkies A, Vreeburg RAM, Fry SC, Krieger-Liszkay A, Leubner-Metzger G (2009) In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol 150(4):1855–1865

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fadhlalmawla SA, Mohamed A-AH, Almarashi JQM, Boutraa T (2019) The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum). Plasma Sci Technol 21(10):105503

    Article  CAS  Google Scholar 

  30. Yodpitak S, Mahatheeranont S, Boonyawan D, Sookwong P, Roytrakul S, Norkaew O (2019) Cold plasma treatment to improve germination and enhance the bioactive phytochemical content of germinated brown rice. Food Chem 289:328–339

    Article  CAS  PubMed  Google Scholar 

  31. Zhang M-Y, Sun C-Y, Hao G, Ye X-L, Liang C-Y, Zhu G-H (2002) A preliminary analysis of phylogenetic relationships in Cymbidium (Orchidaceae) based on nrITS sequence data. Acta Bot Sin 44(5):588–592

    Google Scholar 

  32. Motomura H, Yukawa T, Ueno O, Kagawa A (2008) The occurrence of crassulacean acid metabolism in Cymbidium (Orchidaceae) and its ecological and evolutionary implications. J Plant Res 121(2):163–177

    Article  CAS  PubMed  Google Scholar 

  33. Luo Y, Jia J, Wang CA (2002) General review of the conservation status of Chinese orchids. Chin Biodivers 11:70–77

    Google Scholar 

  34. Liu Z-J, Chen L-J, Liu K-W, Li LQ, Zhang Y-T, Huang L-Q (2009) Climate warming brings about extinction tendency in wild population of Cymbidium sinense. Acta Ecol Sin/Shengtai Xuebao 29(7):3443–3455

    Google Scholar 

  35. Chung JD, Chun CK, Choi SO (1985) Asymbiotic germination of Cymbidium ensifolium. II. Effects of several supplements to the medium, pH values and light and/or dark culture periods on growth of rhizome and organogenesis for rhizome. J Korean Soc Hortic Sci 26:86–92

    Google Scholar 

  36. Shimasaki K, Uemoto S (1990) Micropropagation of a terrestrial Cymbidium species using rhizomes developed from seeds and pseudobulbs. Plant Cell Tiss Organ Cult 22(3):237–244

    Article  CAS  Google Scholar 

  37. Shimasaki K, Uemoto S (1991) Rhizome induction and plantlet regeneration of Cymbidium goeringii from flower bud cultures in vitro. Plant Cell Tiss Organ Cult 25(1):49–52

    Article  CAS  Google Scholar 

  38. Wang X (1988) Tissue culture of Cymbidium: plant and flower induction in vitro. Lindleyana 3:184–189

    Google Scholar 

  39. Begum AA, Tamaki M, Tahara M, Kako S (1994) Somatic embryogenesis in Cymbidium through in vitro culture of inner tissue of protocorm-like bodies. J Jpn Soc Hortic Sci 63(2):419–427

    Article  CAS  Google Scholar 

  40. Teixeira da Silva JA, Chan M-T, Sanjaya Chai M-L, Tanaka M (2006) Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Sci Hortic 109(4):368–378

    Article  CAS  Google Scholar 

  41. Nayak NR, Tanaka M, Teixeira da Silva JA (2006) Biotechnology of Cymbidium-an overview of recent progress and future opportunities, 1st edn. Kagawa ken, Japan

    Google Scholar 

  42. Yeung EC (2017) A perspective on orchid seed and protocorm development. Bot Stud 58:33

    Article  PubMed  PubMed Central  Google Scholar 

  43. Cai J, Liu X, Vanneste K, Proost S, Tsai W-C, Liu K-W, Chen L-J, He Y, Xu Q, Bian C et al (2015) The genome sequence of the orchid Phalaenopsis equestris. Nat Genet 47:65–72

    Article  CAS  PubMed  Google Scholar 

  44. Zhang GQ, Xu Q, Bian C, Tsai WC, Yeh CM, Liu KW, Yoshida K, Zhang LS et al (2016) The Dendrobium catenatum Lindl. genome sequence provides insights into polysaccharide synthase, floral development and adaptive evolution. Sci Rep 6:19029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  46. Umroong P, Paopun Y, Aramsirirujiwet Sangsawang J (2020) Techniques for preparing spores and hyphae of Schizophyllum commune for morphological observation. Microsc Microanal Res 33(1):22–27

    Google Scholar 

  47. Shi JJ, Cai Y, Zhang J, Yang Y (2009) Characteristics of pulse-modulated radio-frequency atmospheric pressure glow discharge. Thin Solid Films 518:962–966

    Article  CAS  Google Scholar 

  48. Thana P, Wijaikhum A, Poramapijitwat P, Kuensaen C, Meerak J, Ngamjarurojana A, Sarapirom S, Boonyawan D (2019) A compact pulse-modulation cold air plasma jet for the inactivation of chronic wound bacteria: development and characterization. Heliyon 5(9):e02455

    Article  PubMed  PubMed Central  Google Scholar 

  49. Thiry D, Konstantinidis S, Cornil J, Plasma Snyders R (2016) Diagnostics for the low-pressure plasma polymerization process: a critical review. Thin Solid Films 606:19–44

    Article  CAS  Google Scholar 

  50. Parvulescu VI, Magureanu M, Lukes P (2012) Plasma chemistry and catalysis in gases and liquids. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  51. Collette S, Dufour T, Reniers F (2016) Reactivity of water vapor in an atmospheric argon flowing post-discharge plasma torch. Plasma Sources Sci Technol 25:025014

    Article  Google Scholar 

  52. Swanson S, Gilroy S (2010) ROS in plant development. Physiol Plant 138:384–392

    Article  CAS  PubMed  Google Scholar 

  53. Kärkönen A, Kuchitsu K (2015) Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry 112(1):22–32

    Article  PubMed  Google Scholar 

  54. Ben Mohamed H, Vadel AM, Geuns JMC, Khemira H (2012) Effects of hydrogen cyanamide on antioxidant enzymes’ activity, proline and polyamine contents during bud dormancy release in Superior Seedless grapevine buds. Acta Physiol Plant 34(2):429–437

    Article  CAS  Google Scholar 

  55. Balandier P, Bonhomme M, Rageau R, Capitan F, Parisot E (1993) Leaf bud endodormancy release in peach trees: evaluation of temperature models in temperate and tropical climates. Agric For Meteorol 67(1–2):95–113

    Article  Google Scholar 

  56. Mujahid Z, Tounekti T, Khemira H (2020) Cold plasma treatment to release dormancy and improve growth in grape buds: a promising alternative to natural chilling and rest breaking chemicals. Sci Rep 10(1):2667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 13033

  58. Lotfy K (2017) Effects of cold atmospheric plasma jet treatment on the seed germination and enhancement growth of watermelon. Open J Appl Sci 7:705–719

    Google Scholar 

  59. Dröge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82(1):47–49

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the financially supported by the RMUTT Research Foundation Scholarship in 2019, and the RMUTT annual government statement of expenditure in 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Porramain Porjai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pavasupree, S., Chanchula, N., Bootchanont, A. et al. Enhancement Propagation of Protocorms in Orchid (Cymbidium tracyanum L. Castle) by Cold Atmospheric Pressure Air Plasma Jet. Plasma Chem Plasma Process 41, 573–589 (2021). https://doi.org/10.1007/s11090-020-10148-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10148-1

Keywords

Navigation