Skip to main content

Advertisement

Log in

Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease

  • Original Article
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Background

Mineral and bone disorder (MBD) and growth impairment are common complications of pediatric chronic kidney disease (CKD). Chronic inflammation detrimentally affects bone health and statural growth in non-CKD settings, but the impact of inflammation on CKD-MBD and growth in pediatric CKD remains poorly understood. This study assessed associations between inflammatory cytokines with biomarkers of CKD-MBD and statural growth in pediatric CKD.

Methods

This is a cross-sectional study of children with predialysis CKD stages II–V. Cytokines (IL-1b, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, TNF-α, interferon-γ), bone alkaline phosphatase (BAP), and procollagen type 1 N-terminal propeptide (P1NP) were measured at the same time as standard CKD-MBD biomarkers. Associations between cytokines, CKD-MBD biomarkers, and height z-score were assessed using linear regression analysis.

Results

Among 63 children, 52.4% had stage 3 CKD, 76.2% non-glomerular CKD etiology, and 21% short stature. TNF-α was the only cytokine associated with parathyroid hormone (PTH) independent of glomerular filtration rate. After stratification by low, medium, and high TNF-α tertiles, significant differences in PTH, serum phosphorus, alkaline phosphatase, BAP, P1NP, and height z-score were found. In a multivariate analysis, TNF-α positively associated with phosphorus, PTH, and alkaline phosphatase and inversely associated with height z-score, independent of kidney function, age, sex, and active vitamin D analogue use.

Conclusions

TNF-α is positively associated with biomarkers of CKD-MBD and inversely associated with height z-score, indicating that inflammation likely contributes to the development of CKD-MBD and growth impairment in pediatric CKD. Prospective studies to definitively assess causative effects of inflammation on bone health and growth in children with CKD are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Saran R, Robinson B, Abbott KC, Bragg-Gresham J, Chen X, Gipson D, Gu H, Hirth RA, Hutton D, Jin Y, Kapke A, Kurtz V, Li Y, McCullough K, Modi Z, Morgenstern H, Mukhopadhyay P, Pearson J, Pisoni R, Repeck K, Schaubel DE, Shamraj R, Steffick D, Turf M, Woodside KJ, Xiang J, Yin M, Zhang X, Shahinian V (2020) US renal data system 2019 annual data report: epidemiology of kidney disease in the United States. Am J Kidney Dis 75(1 Suppl 1):A6–A7

    Article  PubMed  Google Scholar 

  2. Borzych D, Rees L, Ha IS, Chua A, Valles PG, Lipka M, Zambrano P, Ahlenstiel T, Bakkaloglu SA, Spizzirri AP, Lopez L, Ozaltin F, Printza N, Hari P, Klaus G, Bak M, Vogel A, Ariceta G, Yap HK, Warady BA, Schaefer F, International Pediatric PD Network (IPPN) (2010) The bone and mineral disorder of children undergoing chronic peritoneal dialysis. Kidney Int 78:1295–1304

    Article  PubMed  Google Scholar 

  3. Wesseling-Perry K, Pereira RC, Tseng CH, Elashoff R, Zaritsky JJ, Yadin O, Sahney S, Gales B, Jüppner H, Salusky IB (2012) Early skeletal and biochemical alterations in pediatric chronic kidney disease. Clin J Am Soc Nephrol 7:146–152

    Article  CAS  PubMed  Google Scholar 

  4. Portale AA, Wolf M, Jüppner H, Messinger S, Kumar J, Wesseling-Perry K, Schwartz GJ, Furth SL, Warady BA, Salusky IB (2014) Disordered FGF23 and mineral metabolism in children with CKD. Clin J Am Soc Nephrol 9:344–353

    Article  CAS  PubMed  Google Scholar 

  5. Denburg MR (2016) Fracture burden and risk factors in childhood CKD: results from the CKiD cohort study. J Am Soc Nephrol 27:543–550

    Article  CAS  PubMed  Google Scholar 

  6. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, Gutiérrez OM, Aguillon-Prada R, Lincoln J, Hare JM, Mundel P, Morales A, Scialla J, Fischer M, Soliman EZ, Chen J, Go AS, Rosas SE, Nessel L, Townsend RR, Feldman HI, St John Sutton M, Ojo A, Gadegbeku C, Di Marco GS, Reuter S, Kentrup D, Tiemann K, Brand M, Hill JA, Moe OW, Kuro-O M, Kusek JW, Keane MG, Wolf M (2011) FGF23 induces left ventricular hypertrophy. J Clin Invest 121:4393–4408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Staude H, Jeske S, Schmitz K, Warncke G, Fischer DC (2013) Cardiovascular risk and mineral bone disorder in patients with chronic kidney disease. Kidney Blood Press Res 37:68–83

    Article  CAS  PubMed  Google Scholar 

  8. Wesseling-Perry K, Salusky IB (2013) Chronic kidney disease: mineral and bone disorder in children. Semin Nephrol 33:169–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Waller SC, Ridout D, Cantor T, Rees L (2005) Parathyroid hormone and growth in children with chronic renal failure. Kidney Int 67:2338–2345

    Article  CAS  PubMed  Google Scholar 

  10. Seikaly MG, Salhab N, Gipson D, Yiu V, Stablein D (2006) Stature in children with chronic kidney disease: analysis of NAPRTCS database. Pediatr Nephrol 21:793–799

    Article  PubMed  Google Scholar 

  11. Akchurin OM, Kaskel F (2015) Update on inflammation in chronic kidney disease. Blood Purif 39:84–92

    Article  CAS  PubMed  Google Scholar 

  12. Gupta J, Mitra N, Kanetsky PA, Devaney J, Wing MR, Reilly M, Shah VO, Balakrishnan VS, Guzman NJ, Girndt M, Periera BG, Feldman HI, Kusek JW, Joffe MM, Raj DS, CRIC Study Investigators (2012) Association between albuminuria, kidney function, and inflammatory biomarker profile in CKD in CRIC. Clin J Am Soc Nephrol 7:1938–1946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Akchurin O, Patino E, Dalal V, Meza K, Bhatia D, Brovender S, Zhu YS, Cunningham-Rundles S, Perelstein E, Kumar J, Rivella S, Choi ME (2018) Interleukin-6 contributes to the development of anemia in juvenile CKD. Kidney Int Rep 4:470–483

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fardellone P, Séjourné A, Paccou J, Goëb V (2014) Bone remodelling markers in rheumatoid arthritis. Mediat Inflamm 2014:484280

    Article  Google Scholar 

  15. Sgambato D, Gimigliano F, De Musis C, Moretti A, Toro G, Ferrante E, Miranda A, De Mauro D, Romano L, Iolascon G, Romano M (2019) Bone alterations in inflammatory bowel diseases. World J Clin Cases 7:1908–1925

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shaw AT, Gravallese EM (2016) Mediators of inflammation and bone remodeling in rheumatic disease. Semin Cell Dev Biol 49:2–10

    Article  CAS  PubMed  Google Scholar 

  17. Tambralli A, Beukelman T, Weiser P, Atkinson TP, Cron RQ, Stoll ML (2013) High doses of infliximab in the management of juvenile idiopathic arthritis. J Rheumatol 40:1749–1755

    Article  CAS  Google Scholar 

  18. Rinawi F, Assa A, Almagor T, Ziv-Baran T, Shamir R (2019) Prevalence and predictors of growth impairment and short stature in pediatric-onset inflammatory bowel disease. Digestion. https://doi.org/10.1159/000501924

  19. Guzman J, Kerr T, Ward LM, Ma J, Oen K, Rosenberg AM, Feldman BM, Boire G, Houghton K, Dancey P, Scuccimarri R, Bruns A, Huber AM, Watanabe Duffy K, Shiff NJ, Berard RA, Levy DM, Stringer E, Morishita K, Johnson N, Cabral DA, Larché M, Petty RE, Laxer RM, Silverman E, Miettunen P, Chetaille AL, Haddad E, Spiegel L, Turvey SE, Schmeling H, Lang B, Ellsworth J, Ramsey SE, Roth J, Campillo S, Benseler S, Chédeville G, Schneider R, Tse SML, Bolaria R, Gross K, Feldman D, Cameron B, Jurencak R, Dorval J, LeBlanc C, St Cyr C, Gibbon M, Yeung RSM, Duffy CM, Tucker LB (2017) Growth and weight gain in children with juvenile idiopathic arthritis: results from the ReACCh-Out cohort. Pediatr Rheumatol Online J 15:68

    Article  PubMed  PubMed Central  Google Scholar 

  20. Maldonado-Pérez MB, Castro-Laria L, Caunedo-Álvarez A, Montoya-García MJ, Giner-García M, Argüelles-Arias F, Romero-Gómez M, Vázquez-Gámez MÁ (2019) Does the antitumor necrosis factor-alpha therapy decrease the vertebral fractures occurrence in inflammatory bowel disease? J Clin Densitom 22:195–202

    Article  PubMed  Google Scholar 

  21. Horneff G, Burgos-Vargas R, Constantin T, Foeldvari I, Vojinovic J, Chasnyk VG, Dehoorne J, Panaviene V, Susic G, Stanevica V, Kobusinska K, Zuber Z, Mouy R, Rumba-Rozenfelde I, Breda L, Dolezalova P, Job-Deslandre C, Wulffraat N, Alvarez D, Zang C, Wajdula J, Woodworth D, Vlahos B, Martini A, Ruperto N, Paediatric Rheumatology International Trials Organisation (PRINTO) (2014) Efficacy and safety of open-label etanercept on extended oligoarticular juvenile idiopathic arthritis, enthesitis-related arthritis and psoriatic arthritis: part 1 (week 12) of the CLIPPER study. Ann Rheum Dis 73:1114–1122

    Article  CAS  PubMed  Google Scholar 

  22. Navarro-González JF, Mora-Fernández C, Muros M, Herrera H, García J (2009) Mineral metabolism and inflammation in chronic kidney disease patients: a cross-sectional study. Clin J Am Soc Nephrol 4:1646–1654

    Article  PubMed  PubMed Central  Google Scholar 

  23. Munoz Mendoza J, Isakova T, Ricardo AC, Xie H, Navaneethan SD, Anderson AH, Bazzano LA, Xie D, Kretzler M, Nessel L, Hamm LL, Negrea L, Leonard MB, Raj D, Wolf M, Chronic renal insufficiency cohort (2012) Fibroblast growth factor 23 and Inflammation in CKD. Clin J Am Soc Nephrol 7:1155–1162

    Article  PubMed  PubMed Central  Google Scholar 

  24. Egli-Spichtig D, Imenez Silva PH, Glaudemans B, Gehring N, Bettoni C, Zhang MYH, Pastor-Arroyo EM, Schönenberger D, Rajski M, Hoogewijs D, Knauf F, Misselwitz B, Frey-Wagner I, Rogler G, Ackermann D, Ponte B, Pruijm M, Leichtle A, Fiedler GM, Bochud M, Ballotta V, Hofmann S, Perwad F, Föller M, Lang F, Wenger RH, Frew I, Wagner CA (2019) Tumor necrosis factor stimulates fibroblast growth factor 23 levels in chronic kidney disease and non-renal inflammation. Kidney Int 96:890–905

    Article  CAS  PubMed  Google Scholar 

  25. Viaene L, Behets GJ, Heye S, Claes K, Monbaliu D, Pirenne J, D'Haese PC, Evenepoel P (2016) Inflammation and the bone-vascular axis in end-stage renal disease. Osteoporos Int 27:489–497

    Article  CAS  PubMed  Google Scholar 

  26. Sang C, Zhang Y, Chen F, Huang P, Qi J, Wang P, Zhou Q, Kang H, Cao X, Guo L (2016) Tumor necrosis factor alpha suppresses osteogenic differentiation of MSCs by inhibiting semaphorin 3B via Wnt/β-catenin signaling in estrogen-deficiency induced osteoporosis. Bone 84:78–87

    Article  CAS  PubMed  Google Scholar 

  27. Andrassy KM (2013) Comments on 'KDIGO 2012 Clinical Practice Guideline for the evaluation and management of chronic kidney disease'. Kidney Int 84:622–623

    Article  CAS  PubMed  Google Scholar 

  28. Mian AN, Schwartz GJ (2017) Measurement and estimation of glomerular filtration rate in children. Adv Chronic Kidney Dis 24:348–356

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kuczmarski RJ, Ogden CL, Guo SS, Grummer-Strawn LM, Flegal KM, Mei Z, Wei R, Curtin LR, Roche AF, Johnson CL (2002) 2000 CDC growth charts for the United States: methods and development. Vital Health Stat 11:1–190

    Google Scholar 

  30. Hulley S, Cummings SR, Browner WS, Grady DG, Newman TB (2013) Designing clinical research, vol 4th. LWW, Philadelphia

    Google Scholar 

  31. Glosse P, Fajol A, Hirche F, Feger M, Voelkl J, Lang F, Stangl GI, Föller M (2018) A high-fat diet stimulates fibroblast growth factor 23 formation in mice through TNFα upregulation. Nutr Diabetes 8:36

    Article  PubMed  PubMed Central  Google Scholar 

  32. McKnight Q, Jenkins S, Li X, Nelson T, Marlier A, Cantley LG, Finberg KE, Fretz JA (2020) IL-1β drives production of FGF-23 at the onset of chronic kidney disease in mice. J Bone Miner Res 35:1352–1362

    Article  CAS  PubMed  Google Scholar 

  33. Wallquist C, Mansouri L, Norrbäck M, Hylander B, Jacobson SH, Larsson TE, Lundahl J (2018) Associations of fibroblast growth factor 23 with markers of inflammation and leukocyte transmigration in chronic kidney disease. Nephron 138:287–295

    Article  CAS  PubMed  Google Scholar 

  34. Lee C-T, Tsai YC, Ng HY, Su Y, Lee WC, Lee LC, Chiou TT, Liao SC, Hsu KT (2009) Association between C-reactive protein and biomarkers of bone and mineral metabolism in chronic hemodialysis patients: a cross-sectional study. J Ren Nutr 19:220–227

    Article  PubMed  Google Scholar 

  35. Vázquez-Huerta DI, Alvarez-Rodríguez BA, Topete-Reyes JF, Muñoz-Valle JF, Parra-Michel R, Fuentes-Ramírez F, Salazar-López MA, Valle Y, Reyes-Castillo Z, Cruz-González A, Brennan-Bourdon LM, Torres-Carrillo N (2014) Tumor necrosis factor alpha-238 G/A and-308 G/A polymorphisms and soluble TNF-α levels in chronic kidney disease: correlation with clinical variables. Int J Clin Exp Med 7:2111–2119

    PubMed  PubMed Central  Google Scholar 

  36. Sanchez-Niño MD, Bozic M, Córdoba-Lanús E, Valcheva P, Gracia O, Ibarz M, Fernandez E, Navarro-Gonzalez JF, Ortiz A, Valdivielso JM (2012) Beyond proteinuria: VDR activation reduces renal inflammation in experimental diabetic nephropathy. Am J Physiol Ren Physiol 302:F647–F657

    Article  Google Scholar 

  37. Paul K, Franke S, Nadal J, Schmid M, Yilmaz A, Kretzschmar D, Bärthlein B, Titze S, Koettgen A, Wolf G, Busch M, GCKD study group (2016) Inflammation, vitamin D and dendritic cell precursors in chronic kidney disease. Clin Exp Immunol 186:86–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Querfeld U (2013) Vitamin D and inflammation. Pediatr Nephrol 28:605–610

    Article  PubMed  Google Scholar 

  39. Ding J, Ghali O, Lencel P, Broux O, Chauveau C, Devedjian JC, Hardouin P, Magne D (2009) TNF-α and IL-1β inhibit RUNX2 and collagen expression but increase alkaline phosphatase activity and mineralization in human mesenchymal stem cells. Life Sci 84:499–504

    Article  CAS  PubMed  Google Scholar 

  40. Lam J, Takeshita S, Barker JE, Kanagawa O, Ross FP, Teitelbaum SL (2000) TNF-α induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J Clin Invest 106:1481–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. David V, Martin A, Isakova T, Spaulding C, Qi L, Ramirez V, Zumbrennen-Bullough KB, Sun CC, Lin HY, Babitt JL, Wolf M (2016) Inflammation and functional iron deficiency regulate fibroblast growth factor 23 production. Kidney Int 89:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tu J, Cheung WW, Mak RH (2016) Inflammation and nutrition in children with chronic kidney disease. World J Nephrol 5:274–282

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wu W, Zhang H (2014) Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. J Toxicol Sci 39:875–886

    Article  CAS  PubMed  Google Scholar 

  44. Starnes HF Jr, Warren RS, Jeevanandam M, Gabrilove JL, Larchian W, Oettgen HF, Brennan MF (1988) Tumor necrosis factor and the acute metabolic response to tissue injury in man. J Clin Invest 82:1321–1325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Solmi M, Veronese N, Favaro A, Santonastaso P, Manzato E, Sergi G, Correll CU (2015) Inflammatory cytokines and anorexia nervosa: a meta-analysis of cross-sectional and longitudinal studies. Psychoneuroendocrinology 51:237–252

    Article  CAS  PubMed  Google Scholar 

  46. Sharma R, Agrawal S, Saxena A, Sharma RK (2013) Association of IL-6, IL-10, and TNF-α gene polymorphism with malnutrition inflammation syndrome and survival among end stage renal disease patients. J Interf Cytokine Res 33:384–391

    Article  CAS  Google Scholar 

  47. Picardi A, Gentilucci UV, Zardi EM, Caccavo D, Petitti T, Manfrini S, Pozzilli P, Afeltra A (2003) TNF-α and growth hormone resistance in patients with chronic liver disease. J Interf Cytokine Res 23:229–235

    Article  CAS  Google Scholar 

  48. Kuvibidila S, Gardner R, Ode D, Yu L, Lane G, Warrier RP (1997) Tumor necrosis factor alpha in children with sickle cell disease in stable condition. J Natl Med Assoc 89:609–615

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Griffin LM, Thayu M, Baldassano RN, DeBoer MD, Zemel BS, Denburg MR, Denson LA, Shults J, Herskovitz R, Long J, Leonard MB (2015) Improvements in bone density and structure during anti-TNF-alpha therapy in pediatric Crohn's disease. J Clin Endocrinol Metab 100:2630–2639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Malik S, Ahmed SF, Wilson ML, Shah N, Loganathan S, Naik S, Bourke B, Thomas A, Akobeng AK, Fagbemi A, Wilson DC, Russell RK (2012) The effects of anti-TNF-alpha treatment with adalimumab on growth in children with Crohn's disease (CD). J Crohns Colitis 6:337–344

    Article  CAS  PubMed  Google Scholar 

  51. Simonini G, Giani T, Stagi S, de Martino M, Falcini F (2005) Bone status over 1 yr of etanercept treatment in juvenile idiopathic arthritis. Rheumatology (Oxford) 44:777–780

    Article  CAS  Google Scholar 

  52. Tynjälä P, Lahdenne P, Vähäsalo P, Kautiainen H, Honkanen V (2006) Impact of anti-TNF treatment on growth in severe juvenile idiopathic arthritis. Ann Rheum Dis 65:1044–1049

    Article  PubMed  PubMed Central  Google Scholar 

  53. Singh S, Grabner A, Yanucil C, Schramm K, Czaya B, Krick S, Czaja MJ, Bartz R, Abraham R, Di Marco GS, Brand M, Wolf M, Faul C (2016) Fibroblast growth factor 23 directly targets hepatocytes to promote inflammation in chronic kidney disease. Kidney Int 90:985–996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yamada S, Tokumoto M, Tatsumoto N, Taniguchi M, Noguchi H, Nakano T, Masutani K, Ooboshi H, Tsuruya K, Kitazono T (2014) Phosphate overload directly induces systemic inflammation and malnutrition as well as vascular calcification in uremia. Am J Physiol Ren Physiol 306:F1418–F1428

    Article  CAS  Google Scholar 

  55. Santos FRL, Moysés RMA, Montenegro FLM, Jorgetti V, Noronha IL (2003) IL-1β, TNF-α, TGF-β, and bFGF expression in bone biopsies before and after parathyroidectomy. Kidney Int 63:899–907

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Samantha Pellegrino for help with data collection and Dajana Borova and Haneen Aljayyousi for the regulatory support of this study.

Funding

This study was supported in part by the National Institutes of Health National Center for Advancing Translational Sciences UL1TR00457 and UL1TR002384 awarded to the Clinical and Translational Science Center, Weill Cornell Medicine, Rohr Family Clinical Scholar Award, and by the Department of Pediatrics at Weill Cornell Medicine. OA is supported by the K08 DK114558 from the NIH NIDDK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleh Akchurin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 40 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meza, K., Biswas, S., Zhu, YS. et al. Tumor necrosis factor-alpha is associated with mineral bone disorder and growth impairment in children with chronic kidney disease. Pediatr Nephrol 36, 1579–1587 (2021). https://doi.org/10.1007/s00467-020-04846-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00467-020-04846-3

Keywords

Navigation