Skip to main content
Log in

Development and analysis of a new finite element method for the Cohen–Monk PML model

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

This work deals with the Cohen–Monk Perfectly Matched Layer (PML) model. We first carry out the stability analysis of its equivalent form. Then we propose and analyse a finite element scheme for solving this equivalent PML model. Discrete stability and optimal error estimate are established. Numerical results are presented to justify the analysis and effectiveness of this PML model. This paper presents the first mathematical analysis for this PML model and the corresponding numerical analysis for the proposed finite element scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Appelö, D., Hagstrom, T., Kreiss, G.: Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability. SIAM J. Appl. Math. 67(1), 1–23 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bao, G., Li, P., Wu, H.: An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures. Math. Comp. 79, 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bécache, E., Joly, P., Kachanovska, M., Vinoles, V.: Perfectly matched layers in negative index metamaterials and plasmas. ESAIM Proc. Surv. 50, 113–132 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bérenger, J.P.: A perfectly matched layer for the absorbing EM waves. J. Comput. Phys. 114, 185–200 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bokil, V.A., Buksas, M.W.: Comparison of finite difference and mixed finite element methods for perfectly matched layer models. Commun. Comput. Phys. 2, 806–826 (2007)

    MathSciNet  Google Scholar 

  6. Bonnet-Ben Dhia, A.-S., Carvalho, C., Chesnel, L., Ciarlet Jr., P.: On the use of perfectly matched layers at corners for scattering problems with sign-changing coefficients. J. Comput. Phys. 322, 224–247 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cohen, G.C., Monk, P.: Mur-Nédélec finite element schemes for Maxwell’s equations. Comput. Methods Appl. Mech. Eng. 169, 197–217 (1999)

    Article  MATH  Google Scholar 

  8. Hong, J.L., Ji, L.H., Kong, L.H.: Energy-dissipation splitting finite-difference time-domain method for Maxwell equations with perfectly matched layers. J. Comput. Phys. 269, 201–214 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Huang, Y., Li, J., Yang, W.: Mathematical analysis of a PML model obtained with stretched coordinates and its application to backward wave propagation in metamaterials. Numer. Methods Part. Differ. Eq. 30, 1558–1574 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Huang, Y., Li, J., Yang, W., Sun, S.: Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials. J. Comput. Phys. 230, 8275–8289 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kong, L.H., Hong, Y.Q., Tian, N.N., Zhang, P.: Stable and efficient numerical schemes Maxwell equations in lossy medium. J. Comput. Phys. 397, 108703 (2019)

    Article  MathSciNet  Google Scholar 

  12. Li, J.: Finite element study of the Lorentz model in metamaterials. Comput. Methods Appl. Mech. Eng. 200, 626–637 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, J., Hesthaven, J.S.: Analysis and application of the nodal discontinuous Galerkin method for wave propagation in metamaterials. J. Comput. Phys. 258, 915–930 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, J., Huang, Y.: Time-Domain Finite Element Methods for Maxwell’s Equations in Metamaterials, Springer Series in Computational Mathematics, vol. 43. Springer, Berlin (2013)

    Google Scholar 

  15. Lin, Y., Zhang, K., Zou, J.: Studies on some perfectly matched layers for one-dimensional time-dependent systems. Adv. Comput. Math. 30, 1–35 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  17. Taflove, A., Haguess, S.C.: Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. Artech House, Norwood (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichun Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by NSF of China Project No. 11971410, and NSF Grant DMS-20-11943, NNSFC (No. 11961036).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Huang, Y. & Li, J. Development and analysis of a new finite element method for the Cohen–Monk PML model. Numer. Math. 147, 127–155 (2021). https://doi.org/10.1007/s00211-020-01166-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-020-01166-4

Mathematics Subject Classification

Navigation