Skip to main content
Log in

Flexible synthesis of high-purity plasmonic assemblies

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The self-assembly of nanoparticles has attracted a vast amount of attention due to the ability of the nanostructure to control light at the sub-wavelength scale, along with consequent strong electromagnetic field enhancement. However, most approaches developed for the formation of discrete assemblies are limited to a single and homogeneous system, and incorporation of larger or asymmetrical nanoparticles into assemblies with high purity remains a key challenge. Here, a simple and versatile approach to assemble nanoparticles of different sizes, shapes, and materials into various discrete homo- or hetero-structures using only two complementary deoxyribonucleic acid (DNA) strands is presented. First, surface functionalisation using DNA and alkyl-polyethylene glycol (PEG) enables transformation of as-synthesised nanoparticles into readily usable plasmonic building blocks for self-assembly. Optimisation of the DNA coverage enables the production of different assembly types, such as homo- and hetero-dimers, trimers and tetramers and core-satellite structures, which are produced in high purity using electrophoresis purification. The approach is extended from purely plasmonic structures to incorporate (luminescent) semiconductor nanoparticles for formation of hybrid assemblies. The deposited assemblies form a high yield of specific geometrical arrangements, attributed to the van der Waals attraction between particles. This method will enable the development of new complex colloidal nanoassemblies for biological and optical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.

    CAS  Google Scholar 

  2. Bouju, X.; Duguet, É.; Gauffre, F.; Henry, C. R.; Kahn, M. L.; Mélinon, P.; Ravaine, S. Nonisotropic self-assembly of nanoparticles: From compact packing to functional aggregates. Adv. Mater. 2018, 30, 1706558.

    Google Scholar 

  3. Wintzheimer, S.; Granath, T.; Oppmann, M.; Kister, T.; Thai, T.; Kraus, T.; Vogel, N.; Mandel, K. Supraparticles: Functionality from uniform structural motifs. ACS Nano 2018, 12, 5093–5120.

    CAS  Google Scholar 

  4. Thorkelsson, K.; Bai, P.; Xu, T. Self-assembly and applications of anisotropic nanomaterials: A review. Nano Today 2015, 10, 48–66.

    CAS  Google Scholar 

  5. Langer, J.; de Aberasturi, D. J.; Aizpurua, J.; Alvarez-Puebla, R. A.; Auguié, B.; Baumberg, J. J.; Bazan, G. C.; Bell, S. E. J.; Boisen, A.; Brolo, A. G. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117.

    CAS  Google Scholar 

  6. Bidault, S.; Devilez, A.; Maillard, V.; Lermusiaux, L.; Guigner, J. M.; Bonod, N.; Wenger, J. Picosecond lifetimes with high quantum yields from single-photon-emitting colloidal nanostructures at room temperature. ACS Nano 2016, 10, 4806–4815.

    CAS  Google Scholar 

  7. Kyriazi, M. E.; Giust, D.; El-Sagheer, A. H.; Lackie, P. M.; Muskens, O. L.; Brown, T.; Kanaras, A. G. Multiplexed mRNA sensing and combinatorial-targeted drug delivery using DNA-gold nanoparticle dimers. ACS Nano 2018, 12, 3333–3340.

    CAS  Google Scholar 

  8. Raeesi, V.; Chou, L. Y. T.; Chan, W. C. W. Tuning the drug loading and release of DNA-assembled gold-nanorod superstructures. Adv. Mater. 2016, 28, 8511–8518.

    CAS  Google Scholar 

  9. Cheng, X. J.; Sun, R.; Yin, L.; Chai, Z. F.; Shi, H. B.; Gao, M. Y. Light-triggered assembly of gold nanoparticles for photothermal therapy and photoacoustic imaging of tumors in vivo. Adv. Mater. 2017, 29, 1604894.

    Google Scholar 

  10. Romo-Herrera, J. M.; Alvarez-Puebla, R. A.; Liz-Marzán, L. M. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011, 3, 1304–1315.

    CAS  Google Scholar 

  11. Zhang, Y. G.; Lu, F.; Yager, K. G.; van der Lelie, D.; Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 2013, 8, 865–872.

    CAS  Google Scholar 

  12. Maye, M. M.; Kumara, M. T.; Nykypanchuk, D.; Sherman, W. B.; Gang, O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat. Nanotechnol. 2010, 5, 116–120.

    CAS  Google Scholar 

  13. Fan, J. A.; He, Y.; Bao, K.; Wu, C.; Bao, J. M.; Schade, N. B.; Manoharan, V. N.; Shvets, G.; Nordlander, P.; Liu, D. R. et al. DNA-enabled self-assembly of plasmonic nanoclusters. Nano Lett. 2011, 11, 4859–4864.

    CAS  Google Scholar 

  14. Kuzyk, A.; Schreiber, R.; Fan, Z. Y.; Pardatscher, G.; Roller, E. M.; Högele, A.; Simmel, F. C.; Govorov, A. O.; Liedl, T. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 2012, 483, 311–314.

    CAS  Google Scholar 

  15. Slaughter, L. S.; Willingham, B. A.; Chang, W. S.; Chester, M. H.; Ogden, N.; Link, S. Toward plasmonic polymers. Nano Lett. 2012, 12, 3967–3972.

    CAS  Google Scholar 

  16. Barrow, S. J.; Funston, A. M.; Wei, X. Z.; Mulvaney, P. DNA-directed self-assembly and optical properties of discrete 1D, 2D and 3D plasmonic structures. Nano Today 2013, 8, 138–167.

    CAS  Google Scholar 

  17. Lermusiaux, L.; Maillard, V.; Bidault, S. Widefield spectral monitoring of nanometer distance changes in DNA-templated plasmon rulers. ACS Nano 2015, 9, 978–990.

    CAS  Google Scholar 

  18. Urban, M. J.; Dutta, P. K.; Wang, P. F.; Duan, X. Y.; Shen, X. B.; Ding, B. Q.; Ke, Y. G; Liu, N. Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 2016, 138, 5495–5498.

    CAS  Google Scholar 

  19. Lermusiaux, L.; Funston, A. M. Plasmonic isomers via DNA-based self-assembly of gold nanoparticles. Nanoscale 2018, 10, 19557–19567.

    CAS  Google Scholar 

  20. Lerch, S.; Reinhard, B. M. Effect of interstitial palladium on plasmon-driven charge transfer in nanoparticle dimers. Nat. Commun. 2018, 9, 1608.

    Google Scholar 

  21. Mayevsky, A. D.; Funston, A. M. Control of electric field localization by three-dimensional bowtie nanoantennae. J. Phys. Chem. C 2018, 122, 18012–18020.

    CAS  Google Scholar 

  22. Liu, X. L.; Liang, S.; Nan, F.; Yang, Z. J.; Yu, X. F.; Zhou, L.; Hao, Z. H.; Wang, Q. Q. Solution-dispersible Au nanocube dimers with greatly enhanced two-photon luminescence and SERS. Nanoscale 2013, 5, 5368–5374.

    CAS  Google Scholar 

  23. Malachosky, E. W.; Guyot-Sionnest, P. Gold bipyramid nanoparticle dimers. J. Phys. Chem. C 2014, 118, 6405–6412.

    CAS  Google Scholar 

  24. Zohar, N.; Haran, G. Modular plasmonic antennas built of ultrathin silica-shell silver-core nanoparticles. Langmuir 2014, 30, 7919–7927.

    CAS  Google Scholar 

  25. Zhao, Y.; Sun, M. Z.; Ma, W.; Kuang, H.; Xu, C. L. Biological molecules-governed plasmonic nanoparticle dimers with tailored optical behaviors. J. Phys. Chem. Lett. 2017, 8, 5633–5642.

    CAS  Google Scholar 

  26. Lloyd, J. A.; Ng, S. H.; Liu, A. C. Y.; Zhu, Y.; Chao, W.; Coenen, T.; Etheridge, J.; Gómez, D. E.; Bach, U. Plasmonic nanolenses: Electrostatic self-assembly of hierarchical nanoparticle trimers and their response to optical and electron beam stimuli. ACS Nano 2017, 11, 1604–1612.

    CAS  Google Scholar 

  27. Gschneidtner, T. A.; Fernandez, Y. A. D.; Syrenova, S.; Westerlund, F.; Langhammer, C.; Moth-Poulsen, K. A versatile self-assembly strategy for the synthesis of shape-selected colloidal noble metal nanoparticle heterodimers. Langmuir 2014, 30, 3041–3050.

    CAS  Google Scholar 

  28. Fan, Z. Y.; Tebbe, M.; Fery, A.; Agarwal, S.; Greiner, A. Assembly of gold nanoparticles on gold nanorods using functionalized poly(N-isopropylacrylamide) as polymeric “glue”. Part. Part. Syst. Charact. 2016, 33, 698–702.

    CAS  Google Scholar 

  29. Ni, S. B.; Wolf, H.; Isa, L. Programmable assembly of hybrid nanoclusters. Langmuir 2018, 34, 2481–2488.

    CAS  Google Scholar 

  30. Weller, L.; Thacker, V. V.; Herrmann, L. O.; Hemmig, E. A.; Lombardi, A.; Keyser, U. F.; Baumberg, J. J. Gap-dependent coupling of Ag-Au nanoparticle heterodimers using DNA origami-based self-assembly. ACS Photonics 2016, 3, 1589–1595.

    CAS  Google Scholar 

  31. Shen, C. Q.; Lan, X.; Zhu, C. G.; Zhang, W.; Wang, L. Y.; Wang, Q. B. Spiral patterning of Au nanoparticles on Au nanorod surface to form chiral AuNR@AuNP helical superstructures templated by DNA origami. Adv. Mater. 2017, 29, 1606533.

    Google Scholar 

  32. Zhang, C.; Zhao, H. Q.; Zhou, L. N.; Schlather, A. E.; Dong, L. L.; McClain, M. J.; Swearer, D. F.; Nordlander, P.; Halas, N. J. Al-Pd nanodisk heterodimers as antenna-reactor photocatalysts. Nano Lett. 2016, 16, 6677–6682.

    CAS  Google Scholar 

  33. Biswas, S.; Duan, J. S.; Nepal, D.; Park, K.; Pachter, R.; Vaia, R. A. Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett. 2013, 13, 6287–6291.

    CAS  Google Scholar 

  34. Lloyd, J. A.; Ng, S. H.; Davis, T. J.; Gömez, D. E.; Bach, U. Size selective adsorption of gold nanoparticles by electrostatic assembly. J. Phys. Chem. C 2017, 121, 2437–2443.

    CAS  Google Scholar 

  35. Dewi, M. R.; Gschneidtner, T. A.; Elmas, S.; Ranford, M.; Moth-Poulsen, K.; Nann, T. Monofunctionalization and dimerization of nanoparticles using coordination chemistry. ACS Nano 2015, 9, 1434–1439.

    CAS  Google Scholar 

  36. Liu, M.; Fang, L. L.; Li, Y. L.; Gong, M.; Xu, A.; Deng, Z. X. “Flash” preparation of strongly coupled metal nanoparticle clusters with sub-nm gaps by Ag+ soldering: Toward effective plasmonic tuning of solution-assembled nanomaterials. Chem. Sci. 2016, 7, 5435–5440.

    CAS  Google Scholar 

  37. Kumar, J.; Wei, X. Z.; Barrow, S.; M. Funston, A. M.; George Thomas, K.; Mulvaney, P. Surface plasmon coupling in end-to-end linked gold nanorod dimers and trimers. Phys. Chem. Chem. Phys. 2013, 15, 4258–4264.

    CAS  Google Scholar 

  38. Borsley, S.; Flook, S.; R. Kay, E. Rapid and simple preparation of remarkably stable binary nanoparticle planet-satellite assemblies. Chem. Commun. 2015, 51, 7812–7815.

    CAS  Google Scholar 

  39. Zhang, H. Y.; Cadusch, J.; Kinnear, C.; James, T.; Roberts, A.; Mulvaney, P. Direct assembly of large area nanoparticle arrays. ACS Nano 2018, 12, 7529–7537.

    CAS  Google Scholar 

  40. Höller, R. P. M.; Dulle, M.; Thomä, S.; Mayer, M.; Steiner, A. M.; Förster, S.; Fery, A.; Kuttner, C.; Chanana, M. Protein-assisted assembly of modular 3D plasmonic raspberry-like core/satellite nanoclusters: Correlation of structure and optical properties. ACS Nano 2016, 10, 5740–5750.

    Google Scholar 

  41. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 2006, 440, 297–302.

    CAS  Google Scholar 

  42. Edwardson, T. G. W.; Lau, K. L.; Bousmail, D.; Serpell, C. J.; Sleiman, H. F. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 2016, 8, 162–170.

    CAS  Google Scholar 

  43. Schreiber, R.; Do, J.; Roller, E. M.; Zhang, T.; Schüller, V. J.; Nickels, P. C.; Feldmann, J.; Liedl, T. Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nat. Nanotechnol. 2014, 9, 74–78.

    CAS  Google Scholar 

  44. Eskelinen, A. P.; Moerland, R. J.; Kostiainen, M. A.; Törmä, P. Self-assembled silver nanoparticles in a bow-tie antenna configuration. Small 2014, 10, 1057–1062.

    CAS  Google Scholar 

  45. Liu, W. Y.; Li, L.; Yang, S.; Gao, J.; Wang, R. S. Self-assembly of heterogeneously shaped nanoparticles into plasmonic metamolecules on DNA origami. Chem. — Eur. J. 2017, 23, 14177–14181.

    CAS  Google Scholar 

  46. Wang, M.; Dong, J. Y.; Zhou, C.; Xie, H.; Ni, W. H.; Wang, S.; Jin, H. L.; Wang, Q. B. Reconfigurable plasmonic diastereomers assembled by DNA Origami. ACS Nano 2019, 13, 13702–13708.

    CAS  Google Scholar 

  47. Nykypanchuk, D.; Maye, M. M.; van der Lelie, D.; Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008, 451, 549–552.

    CAS  Google Scholar 

  48. Laramy, C. R.; O’Brien, M. N.; Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 2019, 4, 201–224.

    CAS  Google Scholar 

  49. Kim, G. H.; Oh, J. W.; Lin, M. H.; Choe, H.; Oh, J.; Lee, J. H.; Noh, H.; Nam, J. M. Statistical modeling of ligand-mediated multimeric nanoparticle assembly. J. Phys. Chem. C 2019, 123, 21195–21206.

    CAS  Google Scholar 

  50. Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Williams, S. C.; Alivisatos, A. P. Electrophoretic and structural studies of DNA-directed Au nanoparticle groupings. J. Phys. Chem. B 2002, 106, 11758–11763.

    CAS  Google Scholar 

  51. Claridge, S. A.; Goh, S. L.; Fréchet, J. M. J.; Williams, S. C.; Micheel, C. M.; Alivisatos, A. P. Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem. Mater. 2005, 17, 1628–1635.

    CAS  Google Scholar 

  52. Aldaye, F. A.; Sleiman, H. F. Dynamic DNA templates for discrete gold nanoparticle assemblies: Control of geometry, modularity, write/erase and structural switching. J. Am. Chem. Soc. 2007, 129, 4130–4131.

    CAS  Google Scholar 

  53. Fu, A. H.; Micheel, C. M.; Cha, J.; Chang, H.; Yang, H.; Alivisatos, A. P. Discrete nanostructures of quantum dots/Au with DNA. J. Am. Chem. Soc. 2004, 126, 10832–10833.

    CAS  Google Scholar 

  54. Lermusiaux, L.; Sereda, A.; Portier, B.; Larquet, E.; Bidault, S. Reversible switching of the interparticle distance in DNA-templated gold nanoparticle dimers. ACS Nano 2012, 6, 10992–10998.

    CAS  Google Scholar 

  55. Zanchet, D.; Micheel, C. M.; Parak, W. J.; Gerion, D.; Alivisatos, A. P. Electrophoretic isolation of discrete Au nanocrystal/DNA conjugates. Nano Lett. 2001, 1, 32–35.

    CAS  Google Scholar 

  56. Claridge, S. A.; Liang, H. W.; Basu, S. R.; Fréchet, J. M. J.; Alivisatos, A. P. Isolation of discrete nanoparticle-DNA conjugates for plasmonic applications. Nano Lett. 2008, 8, 1202–1206.

    CAS  Google Scholar 

  57. Busson, M. P.; Rolly, B.; Stout, B.; Bonod, N.; Larquet, E.; Polman, A.; Bidault, S. Optical and topological characterization of gold nanoparticle dimers linked by a single DNA double strand. Nano Lett. 2011, 11, 5060–5065.

    CAS  Google Scholar 

  58. Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.

    CAS  Google Scholar 

  59. Hanauer, M.; Pierrat, S.; Zins, I.; Lotz, A.; Sönnichsen, C. Separation of nanoparticles by gel electrophoresis according to size and shape. Nano Lett. 2007, 7, 2881–2885.

    CAS  Google Scholar 

  60. Wang, H. Q.; Deng, Z. X. Gel electrophoresis as a nanoseparation tool serving DNA nanotechnology. Chin. Chem. Lett. 2015, 26, 1435–1438.

    CAS  Google Scholar 

  61. Ma, W.; Kuang, H.; Wang, L. B.; Xu, L. G.; Chang, W. S.; Zhang, H. N.; Sun, M. Z.; Zhu, Y. Y.; Zhao, Y.; Liu, L. Q. et al. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 2013, 3, 1934.

    Google Scholar 

  62. Wang, L. Y.; Smith, K. W.; Dominguez-Medina, S.; Moody, N.; Olson, J. M.; Zhang, H. N.; Chang, W. S.; Kotov, N.; Link, S. Circular differential scattering of single chiral self-assembled gold nanorod dimers. ACS Photonics 2015, 2, 1602–1610.

    CAS  Google Scholar 

  63. Lermusiaux, L.; Bidault, S. Increasing the morphological stability of DNA-templated nanostructures with surface hydrophobicity. Small 2015, 11, 5696–5704.

    CAS  Google Scholar 

  64. Jing, X. X.; Zhang, F.; Pan, M. C.; Dai, X. P.; Li, J.; Wang, L. H.; Liu, X. G.; Yan, H.; Fan, C. H. Solidifying framework nucleic acids with silica. Nat. Protoc. 2019, 14, 2416–2436.

    CAS  Google Scholar 

  65. Oh, T.; Park, S. S.; Mirkin, C. A. Stabilization of colloidal crystals engineered with DNA. Adv. Mater. 2019, 31, 1805480.

    Google Scholar 

  66. Garai, M.; Zhang, T. S.; Gao, N. Y.; Zhu, H.; Xu, Q. H. Single particle studies on two-photon photoluminescence of gold nanorod-nanosphere heterodimers. J. Phys. Chem. C 2016, 120, 11621–11630.

    CAS  Google Scholar 

  67. Lombardi, A.; Grzelczak, M. P.; Pertreux, E.; Crut, A.; Maioli, P.; Pastoriza-Santos, I.; Liz-Marzân, L. M.; Vallée, F.; Del Fatti, N. Fano interference in the optical absorption of an individual gold-silver nanodimer. Nano Lett. 2016, 16, 6311–6316.

    CAS  Google Scholar 

  68. Hao, C. L.; Xu, L. G.; Ma, W.; Wang, L. B.; Kuang, H.; Xu, C. L. Assembled plasmonic asymmetric heterodimers with tailorable chiroptical response. Small 2014, 10, 1805–1812.

    CAS  Google Scholar 

  69. Pothorszky, S.; Zámbó, D.; Deák, T.; Deák, A. Assembling patchy nanorods with spheres: Limitations imposed by colloidal interactions. Nanoscale 2016, 8, 3523–3529.

    CAS  Google Scholar 

  70. Prasad, J.; Zins, I.; Branscheid, R.; Becker, J.; Koch, A. H. R.; Fytas, G.; Kolb, U.; Sönnichsen, C. Plasmonic core-satellite assemblies as highly sensitive refractive index sensors. J. Phys. Chem. C 2015, 119, 5577–5582.

    CAS  Google Scholar 

  71. Zheng, Y. H.; Thai, T.; Reineck, P.; Qiu, L.; Guo, Y. M.; Bach, U. DNA-directed self-assembly of core-satellite plasmonic nanostructures: A highly sensitive and reproducible near-IR SERS sensor. Adv. Funct. Mater. 2013, 23, 1519–1526.

    CAS  Google Scholar 

  72. Li, J. X.; Zhu, B. Q.; Zhu, Z.; Zhang, Y. C.; Yao, X. J.; Tu, S.; Liu, R. D.; Jia, S. S.; Yang, C. J. Simple and rapid functionalization of gold nanorods with oligonucleotides using an mPEG-SH/Tween 20-assisted approach. Langmuir 2015, 31, 7869–7876.

    CAS  Google Scholar 

  73. Liu, K.; Zheng, Y. H.; Lu, X.; Thai, T.; Lee, N. A.; Bach, U.; Gooding, J. J. Biocompatible gold nanorods: One-step surface functionalization, highly colloidal stability, and low cytotoxicity. Langmuir 2015, 31, 4973–4980.

    CAS  Google Scholar 

  74. Schulz, F.; Friedrich, W.; Hoppe, K.; Vossmeyer, T.; Weller, H.; Lange, H. Effective PEGylation of gold nanorods. Nanoscale 2016, 8, 7296–7308.

    CAS  Google Scholar 

  75. Larson, T. A.; Joshi, P. P.; Sokolov, K. Preventing protein adsorption and macrophage uptake of gold nanoparticles via a hydrophobic shield. ACS Nano 2012, 6, 9182–9190.

    CAS  Google Scholar 

  76. Kanaras, A. G.; Kamounah, F. S.; Schaumburg, K.; Kiely, C. J.; Brust, M. Thioalkylated tetraethylene glycol: A new ligand for water soluble monolayer protected gold clusters. Chem. Commun. 2002, 20, 2294–2295.

    Google Scholar 

  77. Lermusiaux, L.; Bidault, S. Temperature-dependent plasmonic responses from gold nanoparticle dimers linked by double-stranded DNA. Langmuir 2018, 34, 14946–14953.

    CAS  Google Scholar 

  78. Piella, J.; Bastús, N. G.; Puntes, V. Size-controlled synthesis of sub-10-nanometer citrate-stabilized gold nanoparticles and related optical properties. Chem. Mater. 2016, 28, 1066–1075.

    CAS  Google Scholar 

  79. Lu, X. F.; Dandapat, A.; Huang, Y. J.; Zhang, L.; Rong, Y.; Dai, L. W.; Sasson, Y.; Zhang, J. W.; Chen, T. Tris base assisted synthesis of monodispersed citrate-capped gold nanospheres with tunable size. RSC Adv. 2016, 6, 60916–60921.

    CAS  Google Scholar 

  80. Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

    CAS  Google Scholar 

  81. Li, Q.; Zhuo, X. L.; Li, S.; Ruan, Q. F.; Xu, Q. H.; Wang, J. F. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 2015, 3, 801–812.

    CAS  Google Scholar 

  82. Scarabelli, L.; Coronado-Puchau, M.; Giner-Casares, J. J.; Langer, J.; Liz-Marzân, L. M. Monodisperse gold nanotriangles: Size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACS Nano 2014, 8, 5833–5842.

    CAS  Google Scholar 

  83. Sánchez-Iglesias, A.; Pastoriza-Santos, I.; Pérez-Juste, J.; Rodríguez-González, B.; García de Abajo, F. J.; Liz-Marzán, L. M. Synthesis and optical properties of gold nanodecahedra with size control. Adv. Mater. 2006, 18, 2529–2534.

    Google Scholar 

  84. Lin, X.; Lin, S.; Liu, Y. L.; Gao, M. M.; Zhao, H. Y.; Liu, B. K.; Hasi, W.; Wang, L. Facile synthesis of monodisperse silver nano-spheres in aqueous solution via seed-mediated growth coupled with oxidative etching. Langmuir 2018, 34, 6077–6084.

    CAS  Google Scholar 

  85. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

    CAS  Google Scholar 

  86. Chen, H. J.; Kou, X. S.; Yang, Z.; Ni, W. H.; Wang, J. F. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237.

    CAS  Google Scholar 

  87. Wu, X.; Ming, T.; Wang, X.; Wang, P. N.; Wang, J. F.; Chen, J. Y. High-photoluminescence-yield gold nanocubes: For cell imaging and photothermal therapy. ACS Nano 2010, 4, 113–120.

    CAS  Google Scholar 

  88. Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

    CAS  Google Scholar 

  89. Boldt, K.; Kirkwood, N.; Beane, G. A.; Mulvaney, P. Synthesis of highly luminescent and photo-stable, graded shell CdSe/CdxZn1−S nanoparticles by in situ alloying. Chem. Mater. 2013, 25, 4731–4738.

    CAS  Google Scholar 

  90. Jasieniak, J.; Smith, L.; van Embden, J.; Mulvaney, P.; Califano, M. Re-examination of the size-dependent absorption properties of CdSe quantum dots. J. Phys. Chem. C 2009, 113, 19468–19474.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) Grants for the ARC Centre of Excellence in Exciton Science, CE170100026 and DP140103011. The authors acknowledge use of facilities within the Monash Centre for Electron Microscopy (MCEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison M. Funston.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lermusiaux, L., Nisar, A. & Funston, A.M. Flexible synthesis of high-purity plasmonic assemblies. Nano Res. 14, 635–645 (2021). https://doi.org/10.1007/s12274-020-3084-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3084-2

Keywords

Navigation