Skip to main content
Log in

Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Tumor hypoxia has been considered to induce tumor cell resistance to radiotherapy and anticancer chemotherapy, as well as predisposing for increased tumor metastases. Therefore, strategies for the eradication of the hypoxic tumor are highly desirable. Photodynamic therapy (PDT) is a new technique that can be used to treat tumors using laser irradiation to photochemically activate a photosensitizer. Compared to traditional radiotherapy and chemotherapy, photodynamic therapy has many advantages, such as good selectivity, low toxicity, and less trauma and resistance. However, PDT is oxygen-dependent, and the lack of oxygen in hypoxic tumors renders photodynamic therapy ineffective. Cyanobacteria, the earliest photosynthetic oxygen-generating organisms, can utilize water as an electron donor to reduce CO2 into organic carbon compounds along with continuously releasing oxygen under sunlight. Inspired by this, herein, cyanobacteria were used as a living carrier of photosensitizer conjugated upconversion nanoparticles (UCNP) to construct a self-supplying oxygen PDT system. Improvement in the PDT efficiency for hypoxic tumors can be achieved as a result of in situ oxygen production by cyanobacteria under near-infrared (NIR) light using UCNP as a light harvesting antenna. A successful demonstration of this concept would be of great significance and could open the door to a new generation of carrier systems in the field of hypoxia-targeted drug transport platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Semenza, G. L. The hypoxic tumor microenvironment: A driving force for breast cancer progression. Biochim. Biophys. Acta 2016, 3, 382–391.

    Article  Google Scholar 

  2. Harrison, L. B.; Chadha, M.; Hill, R. J.; Hu, K.; Shasha, D. Impact of tumor hypoxia and anemia on radiation therapy outcomes. Oncologist 2002, 7, 492–508.

    Article  Google Scholar 

  3. Cummings, B. J.; Keane, T. J.; O’Sullivan, B.; Wong, C. S.; Catton, C. N. Epidermoid anal cancer: Treatment by radiation alone or by radiation and 5-fluorouracil with and without mitomycin C. Int. J. Radiat. Oncol. Biol. Phys. 1991, 21, 1115–1125.

    Article  CAS  Google Scholar 

  4. Chen, Z. Z.; Niu, M.; Chen, G.; Wu, Q.; Tan, L. F.; Fu, C. H.; Ren, X. L.; Zhong, H. S.; Xu, K.; Meng, X. W. Oxygen production of modified core-shell CuO@ZrO2 nanocomposites by microwave radiation to alleviate cancer hypoxia for enhanced chemo-microwave thermal therapy. ACS Nano 2018, 12, 12721–12732.

    Article  CAS  Google Scholar 

  5. Nishida, C. R.; Lee, M.; de Montellano, P. R. O. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol. 2010, 78, 497–502.

    Article  CAS  Google Scholar 

  6. Reddy, S. B.; Williamson, S. K. Tirapazamine: A novel agent targeting hypoxic tumor cells. Expert Opin. Investig. Drugs 2009, 18, 77–87.

    Article  CAS  Google Scholar 

  7. Sun, J. D.; Liu, Q.; Wang, J. L.; Ahluwalia, D.; Ferraro, D.; Wang, Y.; Duan, J. X.; Ammons, W. S.; Curd, J. G.; Matteucci, M. D. et al. Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. Clin. Cancer Res. 2012, 18, 758–770.

    Article  CAS  Google Scholar 

  8. Felsher, D. W. Cancer revoked: Oncogenes as therapeutic targets. Nat. Rev. Cancer 2003, 3, 375–379.

    Article  CAS  Google Scholar 

  9. Agostinis, P.; Berg, K.; Cengel, K. A.; Foster, T. H.; Girotti, A. W.; Gollnick, S. O.; Hahn, S. M.; Hamblin, M. R.; Juzeniene, A.; Kessel, D. et al. Photodynamic therapy of cancer: An update. CA. Cancer J. Clin. 2011, 61, 250–281.

    Article  Google Scholar 

  10. Dąbrowski, J. M.; Arnaut, L. G. Photodynamic therapy (PDT) of cancer: From local to systemic treatment. Photochem. Photobiol. Sci. 2015, 14, 1765–1780.

    Article  Google Scholar 

  11. Cheng, Y. H.; Cheng, H.; Jiang, C. X.; Qiu, X. F.; Wang, K. K.; Huan, W.; Yuan, A. H.; Wu, J. H.; Hu, Y. Q. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy. Nat. Commun. 2015, 6, 8785.

    Article  CAS  Google Scholar 

  12. Zhu, W. W.; Dong, Z. L.; Fu, T. T.; Liu, J. J.; Chen, Q.; Li, Y. G.; Zhu, R.; Xu, L. G.; Liu, Z. Modulation of hypoxia in solid tumor microenvironment with MnO2 nanoparticles to enhance photodynamic therapy. Adv. Funct. Mater. 2016, 26, 5490–5498.

    Article  CAS  Google Scholar 

  13. Gordijo, C. R.; Abbasi, A. Z.; Amini, M. A.; Lip, H. Y.; Maeda, A.; Cai, P.; O’Brien, P. J.; DaCosta, R. S.; Rauth, A. M.; Wu, X. Y. Design of hybrid MnO2-polymer-lipid nanoparticles with tunable oxygen generation rates and tumor accumulation for cancer treatment. Adv. Funct. Mater. 2015, 25, 1858–1872.

    Article  CAS  Google Scholar 

  14. Chen, Q.; Feng, L. Z.; Liu, J. J.; Zhu, W. W.; Dong, Z. L.; Wu, Y. F.; Liu, Z. Intelligent albumin-MnO2 nanoparticles as pH-/H2O2- responsive dissociable nanocarriers to modulate tumor hypoxia for effective combination therapy. Adv. Mater. 2016, 28, 7129–7136.

    Article  CAS  Google Scholar 

  15. Cheng, H.; Zhu, J. Y.; Li, S. Y.; Zeng, J. Y.; Lei, Q.; Chen, K. W.; Zhang, C.; Zhang, X. Z. An O2 self-sufficient biomimetic nanoplatform for highly specific and efficient photodynamic therapy. Adv. Funct. Mater. 2016, 26, 7847–7860.

    Article  CAS  Google Scholar 

  16. Gao, S. T.; Zheng, P. L.; Li, Z. H.; Feng, X. C.; Yan, W. X.; Chen, S. Z.; Guo, W. S.; Liu, D. D.; Yang, X. J.; Wang, S. X. et al. Biomimetic O2-evolving metal-organic framework nanoplatform for highly efficient photodynamic therapy against hypoxic tumor. Biomaterials 2018, 178, 83–94.

    Article  CAS  Google Scholar 

  17. Chen, Z. W.; Wen, D.; Gu, Z. Cargo-encapsulated cells for drug delivery. Sci. China Life Sci. 2020, 63, 599–601.

    Article  Google Scholar 

  18. Cohen, J. E.; Goldstone, A. B.; Paulsen, M. J.; Shudo, Y.; Steele, A. N.; Edwards, B. B.; Patel, J. B.; MacArthur Jr, J. W.; Hopkins, M. S.; Burnett, C. E. et al. An innovative biologic system for photon-powered myocardium in the ischemic heart. Sci. Adv. 2017, 3, e1603078.

  19. Liu, K.; Xing, R. R.; Zou, Q. L.; Ma, G. H.; Möhwald, H.; Yan, X. H. Simple peptide-tuned self-assembly of photosensitizers towards anticancer photodynamic therapy. Angew. Chem., Int. Ed. 2016, 55, 3036–3039.

    Article  CAS  Google Scholar 

  20. Qian, C. G.; Yu, J. C.; Chen, Y. L.; Hu, Q. Y.; Xiao, X. Z.; Sun, W. J.; Wang, C.; Feng, P. J.; Shen, Q. D.; Gu, Z. Light-activated hypoxiaresponsive nanocarriers for enhanced anticancer therapy. Adv. Mater. 2016, 28, 3313–3320.

    Article  CAS  Google Scholar 

  21. Liu, Y. Y.; Liu, Y.; Bu, W. B.; Cheng, C.; Zuo, C. J.; Xiao, Q. F.; Sun, Y.; Ni, D. L.; Zhang, C.; Liu, J. N. et al. Hypoxia induced by upconversion-based photodynamic therapy: Towards highly effective synergistic bioreductive therapy in tumors. Angew. Chem., Int. Ed. 2015, 54, 8105–8109.

    Article  CAS  Google Scholar 

  22. Schulze, A.; Harris, A. L. How cancer metabolism is tuned for proliferation and vulnerable to disruption. Nature 2012, 491, 364–373.

    Article  CAS  Google Scholar 

  23. Huo, M. F.; Wang, L. Y.; Zhang, L. L.; Wei, C. Y.; Chen, Y.; Shi, J. L. Photosynthetic tumor oxygenation by photosensitizer-containing cyanobacteria for enhanced photodynamic therapy. Angew. Chem., Int. Ed. 2020, 59, 1906–1913.

    Article  CAS  Google Scholar 

  24. Maisch, T.; Baier, J.; Franz, B.; Maier, M.; Landthaler, M.; Szeimies, R. M.; Bäumler, W. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 7223–7228.

    Article  CAS  Google Scholar 

  25. Dahl, T. A.; Midden, W. R.; Hartman, P. E. Pure exogenous singlet oxygen: Nonmutagenicity in bacteria. Mutat. Res. 1988, 201, 127–136.

    Article  CAS  Google Scholar 

  26. Vioque, A.; Transformation of cyanobacteria. In Transgenic Microalgae as Green Cell Factories. León, R.; Galván, A.; Fernández, E., Eds.; Springer: New York, 2007; 12–22.

    Chapter  Google Scholar 

  27. Paso, K.; Kallevik, H.; Sjöblom, J. Measurement of wax appearance temperature using near-infrared (NIR) scattering. Energy Fuels 2009, 23, 4988–4994.

    Article  CAS  Google Scholar 

  28. Peng, M. Y.; Zollfrank, C.; Wondraczek, L. Origin of broad NIR photoluminescence in bismuthate glass and bi-doped glasses at room temperature. J. Phys. Condens. Matter. 2009, 21, 285106.

    Article  Google Scholar 

  29. Luo, G. F.; Chen, W. H.; Hong, S.; Cheng, Q.; Qiu, W. X.; Zhang, X. Z. A self-transformable pH-driven membrane-anchoring photosensitizer for effective photodynamic therapy to inhibit tumor growth and metastasis. Adv. Funct. Mater. 2017, 27, 1702122.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Nos. 21977024, 21601046, and 31971304). Advanced Talents Incubation Program of the Hebei University (No. 801260201020). Funded by China Postdoctoral Science Foundation (No. 2019M650558), Beijing Postdoctoral Research Foundation and Beijing Chaoyang District Postdoctoral Research Fundation. We are grateful to Medical Comprehensive Experimental Center of Hebei University for the animal experiment.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinchao Zhang or Zhenhua Li.

Electronic Supplementary Material

12274_2020_3094_MOESM1_ESM.pdf

Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Liu, H., Dai, X. et al. Cyanobacteria-based near-infrared light-excited self-supplying oxygen system for enhanced photodynamic therapy of hypoxic tumors. Nano Res. 14, 667–673 (2021). https://doi.org/10.1007/s12274-020-3094-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3094-0

Keywords

Navigation