Skip to main content
Log in

Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9

  • Original Paper
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

Selection of guide RNA (gRNA) is important to increase the efficiency of gene editing in the CRISPR/Cas9 system. Due to the variation in actual efficiency of insertion/deletion (indel) mutation among selected gRNAs in silico, reliable methods for validation of efficiency of gRNA need to be developed. Three gRNAs with high on-target scores (72.0 for target 1, 65.4 for target 2, and 62.9 for target 3) were designed to target the quail retinol binding protein 7 (qRbp7) gene, and indel efficiencies were predicted by the Sanger sequencing and Inference of CRISPR Edits (ICE) analysis of sorted cell populations receiving the CRISPR/Cas9 vector. Unlike the order of on-target scores among 3 gRNAs, predicted rates of indel mutations were highest in gRNA2, intermediate in gRNA1, and lowest in gRNA3. This was confirmed by actual indel mutation rates, 51.8% in gRNA2, 31% in gRNA1, and 12.9% in gRNA3, which were calculated by sequencing individual allele cloned into a vector. These data showed a rapid and reliable method for estimation of the efficiency of selected gRNAs, providing a critical necessary step for successful gene editing for further applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bhaya, D., Davison, M., & Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: Versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 45(1), 273–297. https://doi.org/10.1146/annurev-genet-110410-132430.

    Article  CAS  PubMed  Google Scholar 

  2. Wong, N., Liu, W., & Wang, X. (2015). WU-CRISPR: Characteristics of functional guide RNAs for the CRISPR/Cas9 system. Genome Biology, 16(1), 1–8. https://doi.org/10.1186/s13059-015-0784-0.

    Article  CAS  Google Scholar 

  3. Tasan, I., & Zhao, H. (2017). Targeting specificity of the CRISPR/Cas9 system. ACS Synthetic Biology, 6(9), 1609–1613. https://doi.org/10.1021/acssynbio.7b00270.

    Article  CAS  PubMed  Google Scholar 

  4. Briner, A. E., Donohoue, P. D., Gomaa, A. A., Selle, K., Slorach, E. M., Nye, C. H., et al. (2014). Guide RNA functional modules direct Cas9 activity and orthogonality. Molecular Cell, 56(2), 333–339. https://doi.org/10.1016/j.molcel.2014.09.019.

    Article  CAS  PubMed  Google Scholar 

  5. Hung, S. S. C., McCaughey, T., Swann, O., Pébay, A., & Hewitt, A. W. (2016). Genome engineering in ophthalmology: Application of CRISPR/Cas to the treatment of eye disease. Progress in Retinal and Eye Research. https://doi.org/10.1016/j.preteyeres.2016.05.001.

    Article  PubMed  Google Scholar 

  6. Horlbeck, M. A., Witkowsky, L. B., Guglielmi, B., Replogle, J. M., Gilbert, L. A., Villalta, J. E., et al. (2016). Nucleosomes impede cas9 access to DNA in vivo and in vitro. eLife. https://doi.org/10.7554/eLife.12677.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Doench, J. G., Fusi, N., Sullender, M., Hegde, M., Vaimberg, E. W., Donovan, K. F., et al. (2016). Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nature Biotechnology, 34(2), 184–191. https://doi.org/10.1038/nbt.3437.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, J., Ma, J., & Lee, K. (2019). Direct delivery of adenoviral CRISPR/Cas9 vector into the blastoderm for generation of targeted gene knockout in quail. Proceedings of the National Academy of Sciences of the United States of America, 116(27), 13288–13292. https://doi.org/10.1073/pnas.1903230116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lee, J., Kim, D. H., & Lee, K. (2020). Muscle hyperplasia in Japanese quail by single amino acid deletion in MSTN propeptide. International Journal of Molecular Sciences, 21(4), 1504. https://doi.org/10.3390/ijms21041504.

    Article  CAS  PubMed Central  Google Scholar 

  10. Ahn, J., Lee, J., Park, J. Y., Oh, K. B., Hwang, S., Lee, C. W., et al. (2017). Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system. Poultry Science, 96(5), 1445–1450. https://doi.org/10.3382/ps/pew435.

    Article  CAS  PubMed  Google Scholar 

  11. Hsiau, T., Maures, T., Waite, K., Yang, J., Kelso, R., Holden, K., et al. (2018). Inference of CRISPR edits from sanger trace data. bioRxiv. https://doi.org/10.1101/251082.

    Article  Google Scholar 

  12. Roelz, R., Pilz, I. H., Mutschler, M., & Pahl, H. L. (2010). Of mice and men: Human RNA polymerase III promoter U6 is more efficient than its murine homologue for shRNA expression from a lentiviral vector in both human and murine progenitor cells. Experimental Hematology, 38(9), 792–797. https://doi.org/10.1016/j.exphem.2010.05.005.

    Article  CAS  PubMed  Google Scholar 

  13. Bannister, S. C., Wise, T. G., Cahill, D. M., & Doran, T. J. (2007). Comparison of chicken 7SK and U6 RNA polymerase III promoters for short hairpin RNA expression. BMC Biotechnology. https://doi.org/10.1186/1472-6750-7-79.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jiang, F., & Doudna, J. A. (2017). CRISPR–Cas9 structures and mechanisms. Annual Review of Biophysics, 46(1), 505–529. https://doi.org/10.1146/annurev-biophys-062215-010822.

    Article  CAS  PubMed  Google Scholar 

  15. Wang, J., Wang, H., Liu, S., Liu, L., Tay, W. T., Walsh, T. K., et al. (2017). CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect Biochemistry and Molecular Biology, 87, 147–153. https://doi.org/10.1016/j.ibmb.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  16. Stukenberg, D., Zauner, S., Dell’Aquila, G., & Maier, U. G. (2018). Optimizing CRISPR/cas9 for the diatom Phaeodactylum tricornutum. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2018.00740.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chang, C. T., Tsai, C. L. N. L., Tang, C. Y., Chen, C. H., Lian, J. H., Hu, C. Y., et al. (2012). Mixed sequence reader: A program for analyzing DNA sequences with heterozygous base calling. The Scientific World Journal, 2012, 365104. https://doi.org/10.1100/2012/365104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339(6121), 819–823. https://doi.org/10.1126/science.1231143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, G., Lee, J. H., Song, S., Kim, S. W., Han, J. S., Shin, S. P., et al. (2020). Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. The FASEB Journal. https://doi.org/10.1096/fj.201903035R.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kim, S. W., Lee, J. H., Park, B. C., & Park, T. S. (2017). Myotube differentiation in clustered regularly interspaced short palindromic repeat/Cas9-mediated MyoD knockout quail myoblast cells. Asian-Australasian Journal of Animal Sciences, 30(7), 1029–1036. https://doi.org/10.5713/ajas.16.0749.

    Article  CAS  PubMed  Google Scholar 

  21. Yang, Z., Steentoft, C., Hauge, C., Hansen, L., Thomsen, A. L., Niola, F., et al. (2015). Fast and sensitive detection of indels induced by precise gene targeting. Nucleic Acids Research. https://doi.org/10.1093/nar/gkv126.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Überbacher, C., Obergasteiger, J., Volta, M., Venezia, S., Müller, S., Pesce, I., et al. (2019). Application of CRISPR/Cas9 editing and digital droplet PCR in human iPSCs to generate novel knock-in reporter lines to visualize dopaminergic neurons. Stem Cell Research. https://doi.org/10.1016/j.scr.2019.101656.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wienert, B., Wyman, S. K., Richardson, C. D., Yeh, C. D., Akcakaya, P., Porritt, M. J., et al. (2019). Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. https://doi.org/10.1126/science.aav9023.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J. B., et al. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biology, 17(1), 1–12. https://doi.org/10.1186/s13059-016-1012-2.

    Article  CAS  Google Scholar 

  25. Liang, G., Zhang, H., Lou, D., & Yu, D. (2016). Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing. Scientific Reports, 6, 1–8. https://doi.org/10.1038/srep21451.

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the United States Department of Agriculture National Institute of Food and Agriculture Grant (Award No. 2020-67015-31537).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by D-HK, JL, and YS. The first draft of the manuscript was written by D-HK, JL, and KL and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Kichoon Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, DH., Lee, J., Suh, Y. et al. Necessity for Validation of Effectiveness of Selected Guide RNA In Silico for Application of CRISPR/Cas9. Mol Biotechnol 63, 140–149 (2021). https://doi.org/10.1007/s12033-020-00290-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-020-00290-8

Keywords

Navigation