Skip to main content

Advertisement

Log in

A Numerical Study on the Operation of the H2 Shaft Furnace with Top Gas Recycling

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The breakthrough route involving a reduction shaft furnace operated with pure hydrogen gas (here called H2-SF) and the electric arc furnace is widely accepted as one of the most viable future alternatives for industrial-scale production of primary steel with minor CO2 emissions. It has been clarified that the largest portion of the total energy for the entire route is consumed by the H2-SF operation, but this unit has not yet received much attention and should therefore be explored. For this, a mathematical model of a reduction shaft furnace is presented in this paper, where a set of simulations were also performed to shed more light on the operation of the H2-SF equipped with a top gas recycling system. The results show that a high gas feed rate is required for guaranteeing a smooth H2-SF operation due to the strong heat demand. An increase in the feed temperature of the gas or in furnace height can reduce the required gas feed. However, an excessive length may conversely result in an increase in the total energy consumption. The model and its results are expected to be helpful for gaining a better understanding of the complex processes in and constraints of the H2-SF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.J. Park, J.H. Lee, D.G. Kim and H. Kim: Metall. Trans. B, 2020, vol. 51B, pp. 417-21.

    Article  Google Scholar 

  2. A.R. da Costa, D. Wagner and F. Patisson: J. Cleaner Prod., 2013, vol. 46, pp. 27-35.

    Article  Google Scholar 

  3. E. Karakaya, C. Nuur and L. Assbring: J. Cleaner Prod., 2018, vol. 195, pp. 651-63.

    Article  Google Scholar 

  4. V. Vogl, M. Åhman and L.J. Nilsson: J. Cleaner Prod., 2018, vol. 203, pp. 736-45.

    Article  CAS  Google Scholar 

  5. R.H. Spitzer, F.S. Manning and W.O. Philbrook: Trans. Metall. Soc. AIME, 1968, vol. 242, pp. 618-25.

    CAS  Google Scholar 

  6. M. Ohmi and T. Usui: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 66-74.

    Article  Google Scholar 

  7. M.S. Valipour and Y. Saboohi: Heat Mass Transfer, 2007, vol. 43, 881-94.

    Article  CAS  Google Scholar 

  8. Y. Hara, M. Sakawa and S. Kondo: Tetsu to Hagane, 1976, vol. 62, pp. 315-23.

    Article  CAS  Google Scholar 

  9. Q.T. Tsay, W.H. Ray and J. Szekely: AIChE J., 1976, vol. 22, pp. 1072-79.

    Article  CAS  Google Scholar 

  10. D. Kaneko, Y. Takenaka, Y. Kimura and K. Narita: Trans. Iron Steel Inst. Jpn., 1982, vol. 22, pp. 88-97.

    Article  Google Scholar 

  11. Y. Takenaka and Y. Kimura: Comput. Chem. Eng., 1986, vol. 10, pp. 67-75.

    Article  CAS  Google Scholar 

  12. R. Takahashi, Y. Takahashi, J. Yagi and Y. Omori: Trans. Iron Steel Inst. Jpn., 1986, vol. 26, pp. 765-74.

    Article  Google Scholar 

  13. E.D. Negri, O.M. Alfano and M.G. Chiovetta: Ind. Eng. Chem. Res., 1995, vol. 34, pp. 4266-77.

    Article  CAS  Google Scholar 

  14. D.R. Parisi and M.A. Laborde: Chem. Eng. J., 2004, vol. 104, pp. 35-43.

    Article  CAS  Google Scholar 

  15. A. Ajbar, K. Alhumaiza and M. Soliman: Ironmaking Steelmaking, 2011, vol. 38, pp. 401-11.

    Article  CAS  Google Scholar 

  16. A. Rahimi and A. Niksiar: Int. J. Miner. Process., 2013, vol. 124, pp. 58-66.

    Article  CAS  Google Scholar 

  17. B.N. Liu, Q. Li, Z.S. Zou and A.B. Yu: Ironmaking Steelmaking, 2014, vol. 41, pp. 568-74.

    Article  CAS  Google Scholar 

  18. S. Natsui, T. Kikuchi and R.O. Suzuki: Metall. Trans. B, 2014, vol. 45B, pp. 2395-2413.

    Article  Google Scholar 

  19. Y. Kato, Y. Ujisawa, H. Sakai and T. Inada: ISIJ Int., 2015, vol. 55, pp. 359-64.

    Article  CAS  Google Scholar 

  20. A. Shams and F. Moazeni: JOM, 2015, vol. 67, pp. 2681-89.

    Article  CAS  Google Scholar 

  21. R.H. Tien and E.T. Turkdogan: Metall. Trans. A, 1972, vol. 3A, 2039-48.

    Article  Google Scholar 

  22. J. Szekely and Y. El-Tawil: Metall. Trans. B, 1976, vol. 7B, 490-92.

    Article  CAS  Google Scholar 

  23. M. Kazemi, M.S. Pour and S. Du. Metall. Mater. Trans. B, 2017, vol. 48B, 1114-22.

    Article  Google Scholar 

  24. A.Z. Ghadi, M.S. Valipour, S.M. Vahedi and H.Y. Sohn: Steel Res. Int., 2020, vol. 91, 1900270.

    Article  Google Scholar 

  25. D. Spreitzer and J. Schenk: Steel Res. Int., 2019, vol. 90, 1900108.

    Article  Google Scholar 

  26. T. Akiyama, R. Takahashi and J. Yagi: ISIJ Int., 1993, vol. 33, pp. 703-10.

    Article  CAS  Google Scholar 

  27. NIST Chemistry WebBook (U.S. Department of Commerce, Washington D.C., 2018), https://webbook.nist.gov. Accessed 11 Feb. 2020.

  28. Y. Togino, M. Sugata and K. Yamaguchi: Trans. Iron Steel Inst. Jpn., 1980, vol. 20, pp. 639-45.

    Article  CAS  Google Scholar 

  29. H. Saxén: Metall. Trans. B, 1990, vol. 21B, pp. 913-23.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the National Science Foundation of China (Grants 51604068, 51574064) and the Fundamental Research Funds for the Central Universities (N182504012) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongshu Zou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 22, 2020; accepted October 25, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, L., Wang, Q., Qu, Y. et al. A Numerical Study on the Operation of the H2 Shaft Furnace with Top Gas Recycling. Metall Mater Trans B 52, 451–459 (2021). https://doi.org/10.1007/s11663-020-02020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-02020-6

Navigation