Skip to main content

Advertisement

Log in

Discriminative dictionary learning algorithm with pairwise local constraints for histopathological image classification

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Histopathological image contains rich pathological information that is valued for the aided diagnosis of many diseases such as cancer. An important issue in histopathological image classification is how to learn a high-quality discriminative dictionary due to diverse tissue pattern, a variety of texture, and different morphologies structure. In this paper, we propose a discriminative dictionary learning algorithm with pairwise local constraints (PLCDDL) for histopathological image classification. Inspired by the one-to-one mapping between dictionary atom and profile, we learn a pair of discriminative graph Laplacian matrices that are less sensitive to noise or outliers to capture the locality and discriminating information of data manifold by utilizing the local geometry information of category-specific dictionaries rather than input data. Furthermore, graph-based pairwise local constraints are designed and incorporated into the original dictionary learning model to effectively encode the locality consistency with intra-class samples and the locality inconsistency with inter-class samples. Specifically, we learn the discriminative localities for representations by jointly optimizing both the intra-class locality and inter-class locality, which can significantly improve the discriminability and robustness of dictionary. Extensive experiments on the challenging datasets verify that the proposed PLCDDL algorithm can achieve a better classification accuracy and powerful robustness compared with the state-of-the-art dictionary learning methods.

The proposed PLCDDL algorithm. 1) A pair of graph Laplacian matrices are first learned based on the class-specific dictionaries. 2) Graph-based pairwise local constraints are designed to transfer the locality for coding coefficients. 3) Class-specific dictionaries can be further updated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Sevakula RK, Singh V, Verma NK et al (2018) Transfer learning for molecular cancer classification using deep neural networks. IEEE ACM T Comput Bi 16(6):2089–2100

    Google Scholar 

  2. Wan T, Zhang W, Zhu M, Chen J, Achim A, Qin Z (2017) Automated mitosis detection in histopathology based on non-gaussian modeling of complex wavelet coefficients. Neurocomputing. 237:291–303

    Article  Google Scholar 

  3. Lu C, Ma Z, Mandal M (2015) Automated segmentation of the epidermis area in skin whole slide histopathological images. IET Image Process 9(9):735–742

    Article  Google Scholar 

  4. Kumar N, Verma R, Sharma S et al (2017) A dataset and a technique for generalized nuclear segmentation for computational pathology. IEEE Trans Med Imag 36(7):1550–1560

    Article  Google Scholar 

  5. Li X, Zhang X, Ding M (2019) A sum-modified-Laplacian and sparse representation based multimodal medical image fusion in Laplacian pyramid domain. Medical & biological engineering & computing 57(10):2265–2275

    Article  Google Scholar 

  6. Huang P, Lee C (2009) Automatic classification for pathological prostate images based on fractal analysis. IEEE Trans Med Imag 28(7):1037–1050

    Article  Google Scholar 

  7. Peyret R, Bouridane A, Khelifi F, Tahir MA, al-Maadeed S (2018) Automatic classification of colorectal and prostatic histologic tumor images using multiscale multispectral local binary pattern texture features and stacked generalization. Neurocomputing. 275:83–93

    Article  Google Scholar 

  8. Song Y, Cai W, Zhou Y et al (2013) Feature-based image patch approximation for lung tissue classification. IEEE Trans Med Imag 32(4):797–808

    Article  Google Scholar 

  9. Rathore S, Hussain M, Iftikhar M et al (2014) Ensemble classification of colon biopsy images based on information rich hybrid features. Comput Biol Med 47:76–92

    Article  Google Scholar 

  10. Christodoulou C, Pattichis C, Pantziaris M et al (2003) Texture-based classification of atherosclerotic carotid plaques. IEEE Trans Med Imag. 22(7):902–912

    Article  CAS  Google Scholar 

  11. Doyle S, Feldman M, Tomaszewski J, Madabhushi A (2012) A boosted Bayesian multiresolution classifier for prostate cancer detection from digitized needle biopsies. IEEE Trans Biomed Eng 59(5):1205–1218

    Article  Google Scholar 

  12. Gorelick L, Veksler O, Gaed M, Gomez JA, Moussa M, Bauman G, Fenster A, Ward AD (2013) Prostate histopathology: learning tissue component histograms for cancer detection and classification. IEEE Trans Med Imag. 32(10):1804–1818

    Article  Google Scholar 

  13. Paul A, Mukherjee D, Das P et al (2018) Improved random forest for classification. IEEE Trans Image Process 27(8):4012–4024

    Article  Google Scholar 

  14. Wright J, Yang A, Ganesh A et al (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  15. Srinivas U, Mousavi H, Jeon C et al (2013) SHIRC: A simultaneous sparsity model for histopathological image representation and classification. In: IEEE 10th International Symposium on Biomedical Imagin, pp 1118–1121

    Google Scholar 

  16. Srinivas U, Mousavi H, Monga V et al (2014) Simultaneous sparsity model for histopathological image representation and classification. IEEE Trans Med Imag 33(5):1163–1179

    Article  Google Scholar 

  17. Chang H, Nayak N, Spellman P et al (2013) Characterization of tissue histopathology via predictive sparse decomposition and spatial pyramid matching. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp 91–98

    Google Scholar 

  18. Zhou Y, Chang H, Barner K et al (2014) Classification of histology sections via multispectral convolutional sparse coding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3081–3088

    Google Scholar 

  19. Chang H, Han J, Zhong C, Snijders AM, Mao JH (2017) Unsupervised transfer learning via multi-scale convolutional sparse coding for biomedical applications. IEEE Trans Pattern Anal Mach Intell 40(5):1182–1194

    Article  Google Scholar 

  20. Tang Q, Liu Y, Liu H et al (2017) Medical image classification via multiscale representation learning. Artif Intell Med 79:71–78

    Article  Google Scholar 

  21. Zhang X., Dou H., Ju T., Xu J., Zhang S.: ‘Fusing heterogeneous features from stacked sparse autoencoder for histopathological image analysis’, IEEE J Biomed Health Inform, 2016, 20(5), pp:1377–1383

  22. Zhang Q, Li B (2010) Discriminative K-SVD for dictionary learning in face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 2691–2698

    Google Scholar 

  23. Jiang Z, Lin Z, Davis L et al (2013) Label consistent k-svd: learning a discriminative dictionary for recognition. IEEE Trans Pattern Anal Mach Intell 35(11):2651–2664

    Article  Google Scholar 

  24. Yang M, Zhang L, Feng X et al (2011) Fisher discrimination dictionary learning for sparse representation. In: International Conference on Computer Vision. IEEE, Piscataway, pp 543–550

    Google Scholar 

  25. Gao S, Tsang I, Ma Y et al (2014) Learning category-specific dictionary and shared dictionary for fine-grained image categorization. IEEE Trans Image Process 23(2):623–634

    Article  Google Scholar 

  26. Zhang R, Shen J, Wei F, Li X, Sangaiah AK (2017) Medical image classification based on multi-scale non-negative sparse coding. Artif Intell Med 83:44–51

    Article  CAS  Google Scholar 

  27. Vu T, Mousavi H, Monga V et al (2016) Histopathological image classification using discriminative feature-oriented dictionary learning. IEEE Trans Med Imag. 35(3):738–751

    Article  Google Scholar 

  28. Han Z, Wei B, Zheng Y, Yin Y, Li K, Li S (2017) Breast cancer multi-classification from histopathological images with structured deep learning model. Sci Rep 7(1):4172–4182

    Article  Google Scholar 

  29. Xu Y, Jia Z, Wang L et al (2017) Large scale tissue histopathology image classification, segmentation, and visualization via deep convolutional activation features. BMC Bioinformatics 18(1):281–298

    Article  Google Scholar 

  30. Shi X, Sapkota M, Xing F, Liu F, Cui L, Yang L (2018) Pairwise based deep ranking hashing for histopathology image classification and retrieval. Pattern Recog 81:14–22

    Article  Google Scholar 

  31. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  Google Scholar 

  32. Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 3360–3367

    Google Scholar 

  33. Zheng M, Bu J, Chen C et al (2011) Graph regularized sparse coding for image representation. IEEE Trans Image Process 20(5):1327–1336

    Article  Google Scholar 

  34. Zhang Z, Zhao M, Chow T et al (2015) Graph based constrained semi-supervised learning framework via label propagation over adaptive neighborhood. IEEE Trans Knowl Data 27(9):362–2376

    Google Scholar 

  35. Min H, Liang M, Luo R, Zhu J (2016) Laplacian regularized locality-constrained coding for image classification. Neurocomputing. 171:1486–1495

    Article  Google Scholar 

  36. Li Z, Lai Z, Xu Y, Yang J, Zhang D (2017) A locality-constrained and label embedding dictionary learning algorithm for image classification. IEEE Trans Neural Netw Learn Syst 28(2):278–293

    Article  Google Scholar 

  37. Yuan Y, Li B, Meng M et al (2017) WCE abnormality detection based on saliency and adaptive locality-constrained linear coding. IEEE Trans Autom Sci Eng 14(1):149–159

    Article  Google Scholar 

  38. Zhu X, Suk H, Huang H et al (2017) Low-rank graph-regularized structured sparse regression for identifying genetic biomarkers. IEEE Trans Big Data 3(4):405–414

    Article  Google Scholar 

  39. Sadeghi M, Babaie M, Jutten C et al (2014) ‘Learning overcomplete dictionaries based on atom-by-atom updating’, IEEE Trans. Signal Process 62(4):883–891

    Google Scholar 

  40. Tropp J, Gilbert A et al (2007) Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

    Article  Google Scholar 

  41. Monga V (2013) Animal diagnostics lab dataset [Online]. Available http://signal.ee.psu.edu/medical_imaging.html

  42. Spanhol F, Oliveira L, Petitjean C et al (2016) A dataset for breast cancer histopathological image classification. IEEE Trans Biomed Eng 63(7):1455–1462

    Article  Google Scholar 

Download references

Acknowledgments

We would especially like to thank Associate Professor Chaoyang Ai for his contribution to the English revision of this manuscript.

Funding

This article is supported by Science and Technology Plan Project of Hunan Province in China (2016TP1020), Open fund project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang normal university, Natural Science Foundation of Hunan Province in China (2020JJ4588, 2020JJ4090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongzhong Tang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Mao, L., Zeng, S. et al. Discriminative dictionary learning algorithm with pairwise local constraints for histopathological image classification. Med Biol Eng Comput 59, 153–164 (2021). https://doi.org/10.1007/s11517-020-02281-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02281-y

Keywords

Navigation