Skip to main content

Advertisement

Log in

Photoelectrochemical reduction of dissolved carbon dioxide over Ni(OH)2 into organic oxygenates

  • Original Paper
  • Published:
Journal of the Iranian Chemical Society Aims and scope Submit manuscript

Abstract

The hydrothermal method has been used to prepare Ni(OH)2 photocathode. The photoelectrochemical (PEC) reduction of CO2 over Ni(OH)2 has been conducted in 0.2 M LiClO4 in aqueous and N,N-dimethylformamide (DMF) medium under visible light irradiation. The thin film was characterized by XRD, UV–Vis, FTIR, FESEM-EDX, BET analysis, and electrochemical method for the determination of phases, bandgap energy, chemical bonding, surface morphology, elemental compositions, surface area, and electrochemical properties, respectively. Based on UV–Vis spectroscopy, the bandgap energy of Ni(OH)2 was 1.8 eV which enabled efficient visible light absorption for the photoreaction. The photocurrent density in aqueous and DMF solution at 0.2 V (vs. Ag/AgCl) was 24 mA cm−2 and 5 mA cm−2, respectively. Acetaldehyde and methanol are the products in aqueous solution, while formic acid and methanol are the products in DMF, after 6 h of photoelectrolysis. The product formations from the photoelectrochemical reduction of dissolved CO2 were 612 and 854 ppm in aqueous and DMF, respectively, where the Faradaic efficiency in aqueous and DMF is 24 and 33%, respectively. Furthermore, throughout the PEC study, the transformation of Ni(OH)2 to NiO plays a significant role in the formation of organic oxygenates from the reduction reaction of CO2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. He, J. Tang, J. Shen, J. Chen, S. Song, Enhancement of photocatalytic reduction of CO2 to CH4 over TiO2 nanosheets by modifying with sulfuric acid. Appl. Surf. Sci. 364, 416–427 (2016)

    Article  CAS  Google Scholar 

  2. Q. Zhang, J. Du, A. He, Z. Liu, C. Tao, Low overpotential electrochemical CO2 reduction to formate on Co3O4–CeO2/low graphitic carbon catalyst with oxygen vacancies. J. Solid State Chem. 279, 120946–120954 (2019)

    Article  CAS  Google Scholar 

  3. E. Szaniawska, K. Bienkowski, I.A. Rutkowska, P.J. Kulesza, R. Solarska, Enhanced photoelectrochemical CO2-reduction system based on mixed Cu2O–nonstoichiometric TiO2 photocathode. Catal. Today 300, 145–151 (2018)

    Article  CAS  Google Scholar 

  4. N.T.T. Truc, L.G. Bach, N.T. Hanh, T.-D. Pham, N.T.P. Le Chi, D.T. Tran, M.V. Nguyen, V.N. Nguyen, The superior photocatalytic activity of Nb doped TiO2/g-C3N4 direct Z-scheme system for efficient conversion of CO2 into valuable fuels. J. Colloid Interface Sci. 540, 1–8 (2019)

    Article  CAS  Google Scholar 

  5. L. Yu, X. Ba, M. Qiu, Y. Li, L. Shuai, W. Zhang, Z. Ren, Y. Yu, Visible-light driven CO2 reduction coupled with water oxidation on Cl-doped Cu2O nanorods. Nano Energy 60, 576–582 (2019)

    Article  CAS  Google Scholar 

  6. D.H. Apaydin, E. Tordin, E. Portenkirchner, G. Aufischer, S. Schlager, M. Weichselbaumer, K. Oppelt, N.S. Sariciftci, Photoelectrochemical Reduction of CO2 Using Third-Generation Conjugated Polymers. ChemistrySelect 1, 1156–1162 (2016)

    Article  CAS  Google Scholar 

  7. S. Kaneco, H. Katsumata, T. Suzuki, K. Ohta, Electrochemical reduction of CO2 to methane at the Cu electrode in methanol with sodium supporting salts and its comparison with other alkaline salts. Energy Fuels 20, 409–414 (2006)

    Article  CAS  Google Scholar 

  8. J. Qu, X. Zhang, Y. Wang, C. Xie, Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim. Acta 50, 3576–3580 (2005)

    Article  CAS  Google Scholar 

  9. N. Furuya, S. Koide, Electroreduction of carbon dioxide by metal phthalocyanines. Electrochim. Acta 36, 1309–1313 (1991)

    Article  CAS  Google Scholar 

  10. A.A. Peterson, J.K. Nørskov, Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012)

    Article  CAS  Google Scholar 

  11. T. Yamamoto, D.A. Tryk, A. Fujishima, H. Ohata, Production of syngas plus oxygen from CO2 in a gas-diffusion electrode-based electrolytic cell. Electrochim. Acta 47, 3327–3334 (2002)

    Article  CAS  Google Scholar 

  12. Y. Zhang, L. Sun, K. Lv, Y. Zhang, One-pot synthesis of Ni(OH)2 flakes embedded in highly-conductive carbon nanotube/graphene hybrid framework as high performance electrodes for supercapacitors. Mater. Lett. 213, 131–134 (2018)

    Article  CAS  Google Scholar 

  13. H. Wu, Y. Li, J. Ren, D. Rao, Q. Zheng, L. Zhou, D. Lin, CNT-assembled dodecahedra core@ nickel hydroxide nanosheet shell enabled sulfur cathode for high-performance lithium-sulfur batteries. Nano Energy 55, 82–92 (2019)

    Article  CAS  Google Scholar 

  14. V. Ganesh, S. Farzana, S. Berchmans, Nickel hydroxide deposited indium tin oxide electrodes as electrocatalysts for direct oxidation of carbohydrates in alkaline medium. J. Power Sources 196, 9890–9899 (2011)

    Article  CAS  Google Scholar 

  15. S. Ramesh, K. Karuppasamy, H.M. Yadav, J.-J. Lee, H.-S. Kim, H.-S. Kim, J.-H. Kim, Ni(OH)2-decorated nitrogen doped MWCNT nanosheets as an efficient electrode for high performance supercapacitors. Sci. Rep. 9, 1–10 (2019)

    Article  Google Scholar 

  16. X. Zhou, Z. Xia, Z. Zhang, Y. Ma, Y. Qu, One-step synthesis of multi-walled carbon nanotubes/ultra-thin Ni(OH)2 nanoplate composite as efficient catalysts for water oxidation. J. Mater. Chem. A 2, 11799–11806 (2014)

    Article  CAS  Google Scholar 

  17. H. Zhou, J. Peng, X. Qiu, Y. Gao, L. Lu, W. Wang, β-Ni(OH)2 nanosheets: an effective sensing platform for constructing nucleic acid-based optical sensors. J. Mater. Chem. B 5, 7426–7432 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Q. Xu, H. Jiang, H. Zhang, Y. Hu, C. Li, Heterogeneous interface engineered atomic configuration on ultrathin Ni(OH)2/Ni3S2 nanoforests for efficient water splitting. Appl. Catal. B 242, 60–66 (2019)

    Article  CAS  Google Scholar 

  19. I. Vamvasakis, I.T. Papadas, T. Tzanoudakis, C. Drivas, S.A. Choulis, S. Kennou, G.S. Armatas, Visible-light photocatalytic H2 production activity of β-Ni(OH)2-modified CdS mesoporous nanoheterojunction networks. ACS Catal. 8, 8726–8738 (2018)

    Article  CAS  Google Scholar 

  20. N.I.M. Abdallah, Y. Li, X.-T. Wang, X. Li, C.-W. Wang, Design and fabrication of Ni(OH)2/BiVO4 heterostructured nano-photocatalyst for high-efficient removal of organic dyes, J. Alloys Compd., (2020) 154828-154836

  21. M. Barakat, M. Anjum, R. Kumar, Z. Alafif, M. Oves, M.O. Ansari, Design of ternary Ni(OH)2/graphene oxide/TiO2 nanocomposite for enhanced photocatalytic degradation of organic, microbial contaminants, and aerobic digestion of dairy wastewater. J. Clean. Prod. 258, 120588–120597 (2020)

    Article  CAS  Google Scholar 

  22. A. Meng, S. Wu, B. Cheng, J. Yu, J. Xu, Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance. J. Mater. Chem. A 6, 4729–4736 (2018)

    Article  CAS  Google Scholar 

  23. S. Palanisamy, S. Srinivasan, Electrochemical reduction of CO2 on Ni(OH)2 doped water dispersible graphene under different electrolyte conditions. SN Appl. Sci. 1, 837–843 (2019)

    Article  CAS  Google Scholar 

  24. L. Dai, Q. Qin, P. Wang, X. Zhao, C. Hu, P. Liu, R. Qin, M. Chen, D. Ou, C. Xu, Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 3, e1701069–e1701078 (2017)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. M.S. Akple, T. Ishigaki, P. Madhusudan, Bio-inspired honeycomb-like graphitic carbon nitride for enhanced visible light photocatalytic CO2 reduction activity, Environ. Sci. Pollut. Res., (2020) 1-15

  26. S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013)

    Article  CAS  Google Scholar 

  27. L. Kong, Z. Jiang, H.H. Lai, R.J. Nicholls, T. Xiao, M.O. Jones, P.P. Edwards, Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts. J. Catal. 293, 116–125 (2012)

    Article  CAS  Google Scholar 

  28. X.-J. Wen, C.-G. Niu, M. Ruan, L. Zhang, G.-M. Zeng, AgI nanoparticles-decorated CeO2 microsheets photocatalyst for the degradation of organic dye and tetracycline under visible-light irradiation. J. Colloid Interface Sci. 497, 368–377 (2017)

    Article  CAS  PubMed  Google Scholar 

  29. Y. Qi, H. Qi, C. Lu, Y. Yang, Y. Zhao, Photoluminescence and magnetic properties of β-Ni(OH)2 nanoplates and NiO nanostructures, J. Mater. Sci.: Mater. Electron, 20 (2009) 479-483

  30. G. Lakshminarayana, S. Buddhudu, Spectral analysis of Mn2+, Co2+ and Ni2+: B2O3–ZnO–PbO glasses. Spectrochim. Spectrochimica Acta Part A 63, 295–304 (2006)

    Article  CAS  Google Scholar 

  31. A. De Moura, R. Lima, E. Paris, M. Li, J.A. Varela, E. Longo, Formation of β-nickel hydroxide plate-like structures under mild conditions and their optical properties. J. Solid State Chem. 184, 2818–2823 (2011)

    Article  CAS  Google Scholar 

  32. Z. Liu, R. Ma, M. Osada, K. Takada, T. Sasaki, Selective and controlled synthesis of α-and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 127, 13869–13874 (2005)

    Article  CAS  PubMed  Google Scholar 

  33. D. Dubal, V. Fulari, C. Lokhande, Effect of morphology on supercapacitive properties of chemically grown β-Ni(OH)2 thin films. Microporous Mesoporous Mater. 151, 511–516 (2012)

    Article  CAS  Google Scholar 

  34. M. Chatterjee, D. Enkhtuvshin, B. Siladitya, D. Ganguli, Hollow alumina microspheres from boehmite sols. J. Mater. Sci. 33, 4937–4942 (1998)

    Article  CAS  Google Scholar 

  35. S. Tamura, A. Mori, N. Imanaka, Li+ ion conduction in (Gd, La)2O3–LiNO3 system. Solid State Ion. 175, 467–470 (2004)

    Article  CAS  Google Scholar 

  36. M. Sulaiman, A. Rahman, N. Mohamed, Effect of water-based sol gel method on structural, thermal and conductivity properties of LiNO3–Al2O3 composite solid electrolytes. Arab. J. Chem. 10, 1147–1152 (2017)

    Article  CAS  Google Scholar 

  37. T. Ramesh, P.V. Kamath, Synthesis of nickel hydroxide: effect of precipitation conditions on phase selectivity and structural disorder. J. Power Sources 156, 655–661 (2006)

    Article  CAS  Google Scholar 

  38. P. Jeevanandam, Y. Koltypin, A. Gedanken, Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Lett. 1, 263–266 (2001)

    Article  CAS  Google Scholar 

  39. D. Yang, R. Wang, M. He, J. Zhang, Z. Liu, Ribbon-and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties. J. Phys. Chem. B 109, 7654–7658 (2005)

    Article  CAS  PubMed  Google Scholar 

  40. E. Shangguan, H. Tang, Z. Chang, X.-Z. Yuan, H. Wang, Effects of different Ni(OH)2 precursors on the structure and electrochemical properties of NiOOH. Int. J. Hydrog. Energy 36, 10057–10064 (2011)

    Article  CAS  Google Scholar 

  41. M.K. Motlagh, A. Youzbashi, F. Hashemzadeh, L. Sabaghzadeh, Structural properties of nickel hydroxide/oxyhydroxide and oxide nanoparticles obtained by microwave-assisted oxidation technique. Powder Technol. 237, 562–568 (2013)

    Article  CAS  Google Scholar 

  42. M. Zhou, Z. Wei, H. Qiao, L. Zhu, H. Yang, T. Xia, Particle size and pore structure characterization of silver nanoparticles prepared by confined arc plasma. J. Nanomater. 2009, 3 (2009)

    Article  CAS  Google Scholar 

  43. M.R. Hasan, S.B.A. Hamid, W.J. Basirun, S.H.M. Suhaimy, A.N.C. Mat, A sol–gel derived, copper-doped, titanium dioxide–reduced graphene oxide nanocomposite electrode for the photoelectrocatalytic reduction of CO2 to methanol and formic acid. RSC Adv. 5, 77803–77813 (2015)

    Article  CAS  Google Scholar 

  44. C. Jiang, J. Wu, S.J. Moniz, D. Guo, M. Tang, Q. Jiang, S. Chen, H. Liu, A. Wang, T. Zhang, Stabilization of GaAs photoanodes by in situ deposition of nickel-borate surface catalysts as hole trapping sites. Sustain. Energy Fuels 3, 814–822 (2019)

    Article  CAS  Google Scholar 

  45. Y. Ji, Y. Luo, Theoretical Study on the Mechanism of Photoreduction of CO2 to CH4 on the Anatase TiO2 (101) Surface. ACS Catal. 6, 2018–2025 (2016)

    Article  CAS  Google Scholar 

  46. S.t. Neaţu, J.A. Maciá-Agulló, P. Concepción, H. Garcia, Gold–copper nanoalloys supported on TiO2 as photocatalysts for CO2 reduction by water, J. Am. Chem. Soc., 136 (2014) 15969-15976

  47. J. Mao, K. Li, T. Peng, Recent advances in the photocatalytic CO2 reduction over semiconductors. Catal. Sci. Technol. 3, 2481–2498 (2013)

    Article  CAS  Google Scholar 

  48. N. Zhang, R. Long, C. Gao, Y. Xiong, Recent progress on advanced design for photoelectrochemical reduction of CO2 to fuels. Sci. China Mater. 61, 771–805 (2018)

    Article  CAS  Google Scholar 

  49. J.L. White, M.F. Baruch, J.E. Pander III, Y. Hu, I.C. Fortmeyer, J.E. Park, T. Zhang, K. Liao, J. Gu, Y. Yan, Light-driven heterogeneous reduction of carbon dioxide: photocatalysts and photoelectrodes. Chem. Rev. 115, 12888–12935 (2015)

    Article  CAS  PubMed  Google Scholar 

  50. M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006)

    Article  CAS  Google Scholar 

  51. M. Subrahmanyam, S. Kaneco, N. Alonso-Vante, A screening for the photo reduction of carbon dioxide supported on metal oxide catalysts for C1–C3 selectivity. Appl. Catal. B 23, 169–174 (1999)

    Article  CAS  Google Scholar 

  52. N. Sasirekha, S.J.S. Basha, K. Shanthi, Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. Appl. Catal. B 62, 169–180 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank University of Malaya and the Ministry of Higher Education Malaysia for funding this research through Grants RP020D-16SUS and FP039-2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Nazeer Che Mat.

Ethics declarations

Conflict of interest

All authors declare that there is no conflicting interest and look forward to your positive response.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 718 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che Mat, A.N., Basirun, W.J. & Shahid, M.M. Photoelectrochemical reduction of dissolved carbon dioxide over Ni(OH)2 into organic oxygenates. J IRAN CHEM SOC 18, 1363–1372 (2021). https://doi.org/10.1007/s13738-020-02117-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13738-020-02117-4

Keywords

Navigation