Skip to main content
Log in

Development and Analysis of Silver Nano Particle Influenced PVA/Natural Particulate Hybrid Composites with Thermo-Mechanical Properties

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Owing to develop the utilization of biowaste materials and minimize the usage of plastic materials, Orange peel Powder (OPP) biowaste is chosen as filler material along with Polyvinyl Alcohol (PVA) as a matrix to form biocomposite films. To stretch its applications to antibacterial applications the metal nanoparticles were incorporated by the in-situ generation of Ag by reducing the various concentration of the aqueous solution of AgNO3 to fabricate novel PVA/OPP/(1 mM to 5 mM)AgNPs hybrid biocomposite films. The fabricated biofilms were undergone the antibacterial test, mechanical test, and characterized by FESEM, FTIR, XRD & thermal analysis. The FESEM images clarify the homogenous distribution of filler materials in the PVA matrix and binding between the filler materials & matrices. FT-IR spectrum illustrates, there is no functional group change in the films by the inclusion of AgNPs as compare to the PVA/OPP films and indicates the strong adhesion and well dispersion of filler materials. XRD patterns confirm the presence of Ag and accentuated the crystallite size of generated AgNPs in the films as 23.44 nm, 25.59 nm, 26.25 nm, 28.17 nm, and 28.42 nm. Thermal analysis of the films shows improved thermal stability as well as glass transition temperature of the composite films included with AgNPs, also the considerable increase in the tensile strength and tensile modulus of the PVA/OPP/AgNPs films as compared to the neat PVA, PVA/OPP films. As compare to neat PVA and PVA/OPP films, with the increase of concentration of AgNO3 source solution antibacterial activity of the PVA/OPP/AgNPs films increases against gram-negative and gram-positive bacteria. With the above-improved results by the inclusion of Ag nanoparticles, this hybrid biocomposite films can be utilized in food processing industries

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Avella M, Bonadies E, Martuscelli E, Rimedio R (2001) European current standardization for plastic packaging recoverable through composting and biodegradation. Polym Test 20:517–521

    Article  Google Scholar 

  2. Bura N (2019) An overview of plastic waste management in India. In: Ghosh S (ed) Waste management and resource efficiency. Springer, Singapore, pp. 935–943. https://doi.org/10.1007/978-981-10-7290-1_78

    Chapter  Google Scholar 

  3. Patel M, Von TN, Jochem E (2000) Recycling of plastics in Germany. Resour Conserv Recycl 29:65–90

    Article  Google Scholar 

  4. Kale G, Kijchavengkul T, Auras R et al (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 7:255–277. https://doi.org/10.1002/mabi.200600168

    Article  CAS  PubMed  Google Scholar 

  5. Sarwar MS, Bilal M, Niazi K et al (2018) Preparation and characterization of PVA/nanocellulose/Ag nanocomposite films for antimicrobial food packaging. Carbohydr Polym 184:453–464. https://doi.org/10.1016/j.carbpol.2017.12.068

    Article  CAS  PubMed  Google Scholar 

  6. John MJ, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364. https://doi.org/10.1016/j.carbpol.2007.05.040

    Article  CAS  Google Scholar 

  7. Hegazy AE, Ibrahium MI (2012) Antioxidant activities of orange peel extracts. World Appl Sci J 18:684–688. https://doi.org/10.5829/idosi.wasj.2012.18.05.64179

    Article  CAS  Google Scholar 

  8. Espinosa E, Bascón-villegas I, Rosal A et al (2019) PVA/(ligno) nanocellulose biocomposite films. Effect of residual lignin content on structural, mechanical, barrier and antioxidant properties. Int J Biol Macromol 141:197–206. https://doi.org/10.1016/j.ijbiomac.2019.08.262

    Article  CAS  PubMed  Google Scholar 

  9. Dubey D, Balamurugan K, Agrawal RC et al (2011) Evalution of antibacterial and antioxidant activity of methanolic and hydromethanolic extract of sweet orange peels. Recent Res Sci Technol 3:22–25

    Google Scholar 

  10. Hiri NM, Ioannou I, Ghoul M (2015) Proximate chemical composition of orange peel and variation of phenols and antioxidant activity during convective air drying. J New Sci JS-INAT (9):881–890

  11. Ángel J, López S, Li Q et al (2016) Biorefinery of waste orange peel. Crit Rev Biotechnol 8551:63–69. https://doi.org/10.3109/07388550903425201

    Article  CAS  Google Scholar 

  12. Ahmed I, Anjum M, Azhar M et al (2015) Bioprocessing of citrus waste peel for induced pectinase production by Aspergillus niger; its purification and characterization science direct journal of radiation research and applied bioprocessing of citrus waste peel for induced pectinase production by. J Radiat Res Appl Sci 9:148–154. https://doi.org/10.1016/j.jrras.2015.11.003

    Article  CAS  Google Scholar 

  13. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353. https://doi.org/10.1088/0957-4484/16/10/059

    Article  CAS  PubMed  Google Scholar 

  14. Indiradevi NN, Rajini NSMKT (2019) Antimicrobial properties of poly (propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films. Ionics (Kiel) 25:3461–3471

    Article  CAS  Google Scholar 

  15. Pusphalatha R, Ashok B, Hariram N, Rajulu AV (2019) Generated silver nanoparticles using tamarind leaf extract reducing agent. Int J Polym Anal Charact 24:524–532. https://doi.org/10.1080/1023666X.2019.1614265

    Article  CAS  Google Scholar 

  16. Sadanand V, Rajini N, Varada Rajulu A, Satyanarayana B (2018) Effect of sunlight on the preparation and properties of cellulose/silver nanoparticle composite films by in situ method using Ocimum sanctum leaf extract as a reducing agent. Int J Polym Anal Charact 23:313–320. https://doi.org/10.1080/1023666X.2018.1440915

    Article  CAS  Google Scholar 

  17. Thiagamani SMK, Rajini N, Suchart Siengchin A, Varada Rajulu NH (2019) Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites. Compos Part B 165:516–525. https://doi.org/10.1016/j.compositesb.2019.02.006

    Article  CAS  Google Scholar 

  18. Mathew S, Mathew J, Radhakrishnan EK (2019) Polyvinyl alcohol/silver nanocomposite films fabricated under the influence of solar radiation as effective antimicrobial food packaging material. J Polym Res 26:223

    Article  CAS  Google Scholar 

  19. Rathinavel S, Saravanakumar SS (2020) Development and analysis of poly vinyl alcohol/orange peel powder biocomposite films development and analysis of poly vinyl alcohol/orange peel powder biocomposite films. J Nat Fibers. https://doi.org/10.1080/15440478.2019.1711285

    Article  Google Scholar 

  20. Rhim JW, Wang LF, Hong SI (2013) Food hydrocolloids preparation and characterization of agar/silver nanoparticles composite fi lms with antimicrobial activity. Food Hydrocoll 33:327–335. https://doi.org/10.1016/j.foodhyd.2013.04.002

    Article  CAS  Google Scholar 

  21. Rhim J, Wang L (2014) Applied clay science preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 97–98:174–181. https://doi.org/10.1016/j.clay.2014.05.025

    Article  CAS  Google Scholar 

  22. Saravanakumar SS, Kumaravel A, Nagarajan T et al (2013) Characterization of a novel natural cellulosic fiber from Prosopis juliflora bark. Carbohydr Polym 92:1928–1933. https://doi.org/10.1016/j.carbpol.2012.11.064

    Article  CAS  PubMed  Google Scholar 

  23. Rajkumar R, Manikandan A, Saravanakumar SS (2016) Physicochemical properties of alkali treated new cellulosic fiber from cotton shell. Int J Polym Anal Charact 21:359–364. https://doi.org/10.1080/1023666X.2016.1160509

    Article  CAS  Google Scholar 

  24. Arash B, Reza RM, Mahmoud SK et al (2018) Physico-mechanical and antimicrobial properties of tragacanth/hydroxypropyl methylcellulose/beeswax edible films reinforced with silver nanoparticles Bahrami. Int J Biol Macromol 129:1103–1112. https://doi.org/10.1016/j.ijbiomac.2018.09.045

    Article  CAS  Google Scholar 

  25. Braga LR, Pérez LM, Soazo V, Machado F (2019) Evaluation of the antimicrobial, antioxidant and physicochemical properties of Poly (Vinyl chloride ) fi lms containing quercetin and silver nanoparticles. LWT - Food Sci Technol 101:491–498. https://doi.org/10.1016/j.lwt.2018.11.082

    Article  CAS  Google Scholar 

  26. Arockianathan PM, Sekar S, Kumaran B, Sastry TP (2012) Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol 50:939–946. https://doi.org/10.1016/j.ijbiomac.2012.02.022

    Article  CAS  PubMed  Google Scholar 

  27. Roy S, Shankar S, Rhim J (2018) Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocoll 88:237–246. https://doi.org/10.1016/j.foodhyd.2018.10.013

    Article  CAS  Google Scholar 

  28. Biswas MC, Tiimob BJ, Abdela W et al (2019) Nano silica-carbon-silver ternary hybrid induced antimicrobial composite films for food packaging application. Food Packag Shelf Life 19:104–113. https://doi.org/10.1016/j.fpsl.2018.12.003

    Article  Google Scholar 

  29. Kishanji M, Mamatha G, Reddy KO et al (2017) In situ generation of silver nanoparticles in cellulose matrix using Azadirachta indica leaf extract as a reducing agent. Int J Polym Anal Charact 22:734–740. https://doi.org/10.1080/1023666X.2017.1369612

    Article  CAS  Google Scholar 

  30. Santhanam K, Kumaravel A, Saravanakumar SS, Arthanarieswaran VP (2016) Characterization of new natural cellulosic fiber from ipomoea staphylinaplant. Int J Polym Anal Charact 21:267–274. https://doi.org/10.1080/1023666X.2016.1147654

    Article  CAS  Google Scholar 

  31. Jayaramudu T, Varaprasad K, Pyarasani RD et al (2019) Chitosan capped copper oxide/copper nanoparticles encapsulated microbial resistant nanocomposite fi lms. Int J Biol Macromol 128:499–508. https://doi.org/10.1016/j.ijbiomac.2019.01.145

    Article  CAS  PubMed  Google Scholar 

  32. Mamatha G, Rajulu AV, Madhukar K (2019) Development and analysis of cellulose nanocomposite films with in situ generated silver nanoparticles using tamarind nut powder as a reducing agent. Int J Polym Anal Charact 24:219–226. https://doi.org/10.1080/1023666X.2018.1564572

    Article  CAS  Google Scholar 

  33. Suteewong T, Wongpreecha J, Polpanich D et al (2018) PMMA particles coated with chitosan-silver nanoparticles as a dual antibacterial modifier for natural rubber latex films. Colloids Surf B 174:544–552. https://doi.org/10.1016/j.colsurfb.2018.11.037

    Article  CAS  Google Scholar 

  34. Manikandan KM, Yelilarasi A, Senthamaraikannan P et al (2019) A green-nanocomposite film based on poly (vinyl alcohol)/Eleusine coracana : structural, thermal, and morphological properties. Int J Polym Anal Charact 24:257–265. https://doi.org/10.1080/1023666X.2019.1567087

    Article  CAS  Google Scholar 

  35. Ashok B, Reddy KO, Yorseng K et al (2018) Modification of natural fibers from Thespesia lampas plant by in situ generation of silver nanoparticles in single-step hydrothermal method. Int J Polym Anal Charact 23:509–516. https://doi.org/10.1080/1023666X.2018.1486270

    Article  CAS  Google Scholar 

  36. Srikhao N, Kasemsiri P, Ounkaew A et al (2020) Bioactive nanocomposite film based on cassava starch/polyvinyl alcohol containing green synthesized silver nanoparticles. J Polym Environ. https://doi.org/10.1007/s10924-020-01909-2

    Article  Google Scholar 

  37. Gasti T, Dixit S, Sataraddi SP et al (2020) Physicochemical and biological evaluation of different extracts of edible Solanum nigrum L. leaves incorporated chitosan/poly (vinyl alcohol) composite films. J Polym Environ 124:2254. https://doi.org/10.1007/s10924-020-01832-6

    Article  CAS  Google Scholar 

  38. Sivaranjana P, Nagarajan ER, Rajini N et al (2017) Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Int J Biol Macromol 99:223–232. https://doi.org/10.1016/j.ijbiomac.2017.02.070

    Article  CAS  PubMed  Google Scholar 

  39. Saleem M, Tariq M (2019) Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J King Saud Univ - Sci 32:805–810. https://doi.org/10.1016/j.jksus.2019.02.013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rathinavel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinavel, S., Saravanakumar, S.S. Development and Analysis of Silver Nano Particle Influenced PVA/Natural Particulate Hybrid Composites with Thermo-Mechanical Properties. J Polym Environ 29, 1894–1907 (2021). https://doi.org/10.1007/s10924-020-01999-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01999-y

Keywords

Navigation