Skip to main content
Log in

Polymeric Nanocomposite-Based Herbicide of Carboxymethyl Cellulose Coated-Zinc/Aluminium Layered Double Hydroxide-Quinclorac: A Controlled Release Purpose for Agrochemicals

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In this work, the use of carboxymethyl cellulose (CMC) is highlighted in enhancing the controlled release behaviour of zinc/aluminium layered double hydroxide-quinclorac (Zn/Al-LDH-QC). The Zn/Al-LDH-QC-CMC nanocomposite were characterised using powder x-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric and derivative thermogravimetric analysis and field emission scanning electron microscopy. The release study was carried out in an aqueous solution of Na3PO4, Na2SO4 and NaCl, so as to mimic the environmental condition where the QC is frequently used. The Zn/Al-LDH-QC-CMC nanocomposites showed better performance in releasing QC, with prolonged release time ranging from 163–6083 min, compared to 99–2639 min for the uncoated nanocomposites. The hygroscopic nature of the CMC play a critical role in enhancing the release behaviour of the Zn/Al-LDH-QC-CMC. The kinetic study shows that the Zn/Al-LDH-QC-CMC follows the pseudo-second order kinetic model; hence the release mechanism occurred via dissolution of the CMC matrix and the ion exchange process. These results, therefore, indicate the potential of Zn/Al-LDH-QC-CMC in dealing with the downside effect of the excessive usage of herbicide in paddy cultivation.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Fernández-Pérez M, Villafranca-Sánchez M, Flores-Céspedes F, Daza-Fernández I (2011) Carbohydr Polym 83:1672–1679

    Google Scholar 

  2. Céspedes FF, García SP, Sánchez MV, Pérez MF (2013) Chemosphere 92:918–924

    Google Scholar 

  3. Grillo R, Dos Santos NZP, Maruyama CR et al (2012) J Hazard Mater 231–232:1–9

    PubMed  Google Scholar 

  4. Bashi AM, Hussein MZ, Zainal Z et al (2016) Arab J Chem 9:1457–1463

    Google Scholar 

  5. Nejati K, Davary S, Saati M (2013) Appl Surf Sci 280:67–73

    CAS  Google Scholar 

  6. Touloupakis E, Margelou A, Ghanotakis DF (2011) Pest Manag Sci 67:837–841

    CAS  PubMed  Google Scholar 

  7. Sarijo SH, Ghazali SAI SM, Hussein MZ, Ahmad AH (2015) Mater Today Proc 2:345–354

    Google Scholar 

  8. Liu J, Zhang X, Zhang Y (2015) ACS Appl Mater Interfaces 7:11180–11188

    CAS  PubMed  Google Scholar 

  9. Isa IM, Sharif SNM, Hashim N, Ghani SA (2015) Ionics (Kiel) 21:2949–2958

    CAS  Google Scholar 

  10. Isa IM, Dahlan SNA, Hashim N et al (2012) Int J Electrochem Sci 7:7797–7808

    CAS  Google Scholar 

  11. Wardani NI, Isa IM, Hashim N, Ghani SA (2014) Sens Actuator B Chem 198:243–248

    CAS  Google Scholar 

  12. Zainul R, Azis NA, Isa IM et al (2019) Sensors 19:941

    PubMed Central  Google Scholar 

  13. Aziz INFA, Sarijo SH, Rajidi FSM et al (2019) J Porous Mater 26:717–722

    Google Scholar 

  14. Ahmad MS, Isa IM, Hashim N et al (2018) J Solid State Electrochem 22:2691–2701

    CAS  Google Scholar 

  15. Garrido J, Cagide F, Melle-Franco M et al (2014) J Mol Struct 1061:76–81

    CAS  Google Scholar 

  16. Huang Y, Hu Q, Cui G et al (2020) J Environ Sci Health - Part B 55:342–354

    CAS  Google Scholar 

  17. Al-Kahtani AA, Sherigara BS (2014) Carbohydr Polym 104:151–157

    CAS  PubMed  Google Scholar 

  18. Feng S, Wang J, Zhang L et al (2020) Geofluids 20:1–16

    Google Scholar 

  19. Li GB, Wang J, Kong XP (2020) Carbohydr Polym 249:116865

    CAS  PubMed  Google Scholar 

  20. Chenxi Y, Juan L, Jian W et al (2020). New J Chem. https://doi.org/10.1039/d0nj02771e

    Article  Google Scholar 

  21. Cozzolino CA, Nilsson F, Iotti M et al (2013) Colloids Surf B Biointerfaces 110:208–216

    CAS  PubMed  Google Scholar 

  22. Lavoine N, Desloges I, Bras J (2014) Carbohydr Polym 103:528–537

    CAS  PubMed  Google Scholar 

  23. Lavoine N, Tabary N, Desloges I et al (2014) Colloids Surf B Biointerfaces 121:196–205

    CAS  PubMed  Google Scholar 

  24. Teng Z, Luo Y, Wang Q (2013) Food Chem 141:524–532

    CAS  PubMed  Google Scholar 

  25. Teixeira MA, Paterson WJ, Dunn EJ et al (1990) Ind Eng Chem Res 29:1205–1209

    CAS  Google Scholar 

  26. Azevedo MA, Bourbon AI, Vicente AA, Cerqueira MA (2014) Int J Biol Macromol 71:141–146

    CAS  PubMed  Google Scholar 

  27. Serrano-Cruz MR, Villanueva-Carvajal A, Morales Rosales EJ et al (2013) LWT-Food Sci Technol 50:554–561

    CAS  Google Scholar 

  28. Mahkam M, Davatgar M, Rezvani Z, Nejati K (2013) Int J Polym Mater Polym Biomater 62:57–60

    CAS  Google Scholar 

  29. Yadollahi M, Namazi H, Barkhordari S (2014) Carbohydr Polym 108:83–90

    CAS  PubMed  Google Scholar 

  30. Shu Y, Bai Q, Fu G et al (2020) Carbohydr Polym 227:115346

    CAS  PubMed  Google Scholar 

  31. Pirsa S, Farshchi E, Roufegarinejad L (2020). J Polym Environ. https://doi.org/10.1007/s10924-020-01846-0

    Article  Google Scholar 

  32. Xu W, Li Z, Shi S et al (2020) Appl Catal B Environ 262:1–806

    Google Scholar 

  33. Duan Y, Tan J, Huang Z et al (2020) Carbohydr Polym 249:116882

    CAS  PubMed  Google Scholar 

  34. Roy S, Rhim JW (2020) Int J Biol Macromol 148:666–676

    CAS  PubMed  Google Scholar 

  35. Bhatti HN, Safa Y, Yakout SM et al (2020) Int J Biol Macromol 150:861–870

    CAS  PubMed  Google Scholar 

  36. Wang F, Zhang Q, Huang K et al (2020) Int J Biol Macromol 154:1392–1399

    CAS  PubMed  Google Scholar 

  37. Hao M, Gao P, Yang D et al (2020) Environ Pollut 267:114142

    CAS  PubMed  Google Scholar 

  38. Nakagawa K, Sowasod N, Tanthapanichakoon W, Charinpanitkul T (2013) LWT - Food Sci Technol 54:600–605

    CAS  Google Scholar 

  39. Li J, Li Y, Dong H (2008) J Agric Food Chem 56:1336–1342

    CAS  PubMed  Google Scholar 

  40. Sharif SNM, Hashim N, Md Isa I et al (2018) Mater Res Innov 23:260–265

    Google Scholar 

  41. Yadav M, Rhee KY, Jung IH, Park SJ (2013) Cellulose 20:687–698

    CAS  Google Scholar 

  42. Hussein MZ, Hashim N, Yahaya A, Zainal Z (2011) Sains Malaysiana 40:887–896

    CAS  Google Scholar 

  43. Kura AUU, Hussein-Al-Ali SHH, Hussein MZZ et al (2014). Sci World J. https://doi.org/10.1155/2014/104246

    Article  Google Scholar 

  44. Feng Y, Li D, Wang Y et al (2006) Polym Degrad Stab 91:789–794

    CAS  Google Scholar 

  45. He FA, Zhang LM, Yang F et al (2006) J Polym Res 13:483–493

    CAS  Google Scholar 

  46. Costantino U, Gallipoli A, Nocchetti M et al (2005) Polym Degrad Stab 90:586–590

    CAS  Google Scholar 

  47. Li B, He J, Evans DG (2008) Chem Eng J 144:124–137

    CAS  Google Scholar 

  48. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61–120

    CAS  Google Scholar 

  49. Taibi M, Ammar S, Jouini N et al (2002) J Mater Chem 12:3238–3244

    CAS  Google Scholar 

  50. Hussein MZ, Jaafar AM, Yahaya AH, Zainal Z (2009) Nanoscale Res Lett 4:1351–1357

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Babakhani S, Talib ZA, Hussein MZ, et al. (2014) https://doi.org/10.1155/2014/467064

  52. Angadi SC, Manjeshwar LS, Aminabhavi TM (2010) Int J Biol Macromol 47:171–179

    CAS  PubMed  Google Scholar 

  53. Fernandez JM, Ulibarri MA, Labajos FM, Rives V (1998) J Mater Chem 8:2507–2514

    CAS  Google Scholar 

  54. Sharif SNM, Hashim N, Isa IM et al (2020). Mater Chem Phys. https://doi.org/10.1016/j.matchemphys.2020.123076

    Article  Google Scholar 

  55. Dorniani D, Hussein MZ, Kura AU et al (2013) Int J Mol Sci 14:23639–23653

    PubMed  PubMed Central  Google Scholar 

  56. Xu W, Di C, Zhou S et al (2015) Front Genet 6:1–15

    CAS  Google Scholar 

  57. Pareja L, Pérez-Parada A, Agüera A et al (2012) Chemosphere 87:838–844

    CAS  PubMed  Google Scholar 

  58. Liang X, Jin Y, He M et al (2017) Agric Ecosyst Environ 237:173–180

    Google Scholar 

  59. Zhang A, Chen Z, Zhang G et al (2012) Eur J Soil Biol 52:73–77

    Google Scholar 

  60. Bond JA, Walker TW (2012) Weed Technol 26:183–188

    CAS  Google Scholar 

  61. Sudianto E, Beng-Kah S, Ting-Xiang N et al (2013) Crop Prot 49:40–51

    Google Scholar 

  62. Rodenburg J, Demont M (2009) AgBioForum 12:313–325

    Google Scholar 

  63. Jiangzhou HE (2008) Dong QU 20:1103–1108

    Google Scholar 

  64. Cho JY, Nishiyama M, Matsumoto S (2002) Soil Sci Plant Nutr 48:461–468

    CAS  Google Scholar 

  65. Ducloux J, Guero Y, Fallavier P, Valet S (1994) Geoderma 64:57–71

    CAS  Google Scholar 

  66. Nguyen MN, Dultz S, Kasbohm J, Le D (2009) J Plant Nutr Soil Sci 172:477–486

    CAS  Google Scholar 

  67. Sun H, Xia L, Liang S, Shen S (2014) Food Anal Methods 7:1791–1797

    Google Scholar 

  68. Ghazali SAI SM, Hussein MZ, Sarijo SH (2013) Nanoscale Res Lett 8:1–8

    Google Scholar 

  69. Li S, Shen Y, Xiao M et al (2015) Arab J Chem 12:2563–2571

    Google Scholar 

  70. Hussein MZ, Hashim N, Yahaya AH, Zainal Z (2009) J Nanosci Nanotechnol 9:2140–2147

    PubMed  Google Scholar 

  71. Emeje MO, Kunle OO, Ofoefule SI (2006) Acta Pharm 56:325–335

    CAS  PubMed  Google Scholar 

  72. Hussein MZ, Rahman NSSA, Sarijo SH, Zainal Z (2012) Appl Clay Sci 58:60–66

    CAS  Google Scholar 

  73. Ho YS, Mckay G (1999) Process Biochem 34:451–465

    CAS  Google Scholar 

  74. Kodama T, Harada Y, Ueda M et al (2001) Langmuir 17:4881–4886

    CAS  Google Scholar 

  75. Ritger PL, Peppas NA (1987) J Control release 5:37–42

    CAS  Google Scholar 

  76. Hashim N, Muda Z, Hamid SA et al (2014) J Phys Chem Sci 1:1–6

    Google Scholar 

  77. Hao L, Lin G, Lian J et al (2020) Carbohydr Polym 231:115725

    CAS  PubMed  Google Scholar 

  78. Chen L, Zhou H, Hao L et al (2020) Ind Crops Prod 150:112358

    CAS  Google Scholar 

  79. Pooresmaeil M, Behzadi Nia S, Namazi H (2019) Int J Biol Macromol 139:994–1001

    CAS  PubMed  Google Scholar 

  80. Woo MA, Kim TW, Paek MJ et al (2011) J Solid State Chem 184:171–176

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank UPSI and Ministry of Education Malaysia for the support during completing the research. This work was supported by the GPU-RISING STAR Grant No. 2019−0119−103−01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norhayati Hashim.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, S.N.M., Hashim, N., Isa, I.M. et al. Polymeric Nanocomposite-Based Herbicide of Carboxymethyl Cellulose Coated-Zinc/Aluminium Layered Double Hydroxide-Quinclorac: A Controlled Release Purpose for Agrochemicals. J Polym Environ 29, 1817–1834 (2021). https://doi.org/10.1007/s10924-020-01997-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01997-0

Keywords

Navigation