Skip to main content
Log in

Antifungal activity of Swietenia humilis (Meliaceae: Sapindales) seed extracts against Curvularia eragrostidis (Ascomycota: Dothideomycetes)

  • Original Article
  • Published:
Journal of Plant Diseases and Protection Aims and scope Submit manuscript

Abstract

The mycelial growth inhibition (MGI) of Curvularia eragrostidis by Swietenia humilis seeds extracts (hexane, ethyl acetate, dichloromethane and methanol) at four concentrations (250, 500, 1000 and 2000 ppm) was evaluated. The daily mycelial growth (DMGR), MGI and median effective concentration (EC50) were determined. The DMGR and MGI were significantly affected (p < 0.05) by crude extracts concentrations. The ethyl acetate precipitate (EtOAcp) at the highest concentration (500 ppm) achieved the lowest DMGR (2.54 mm/day, p < 0.05) against the control (9.96 mm/day). Moreover, EtOAcp (500 ppm) significantly increased the MGI% of C. eragrostidis (p < 0.05) by 68.2%, resulting to be the most inhibitory extract by its low EC50 (729 ppm). The medium polarity extracts of S. humilis (EtOAcp) could be considered for future studies on antifungal activity against phytopathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdelgaleil SA, Hashinaga F, Nakatani M (2005) Antifungal activity of limonoids from Khaya ivorensis. Pest Manag Sci 61(2):186–190. https://doi.org/10.1002/ps.978

    Article  CAS  PubMed  Google Scholar 

  • Abdel-Ghany TM, Shater ARM, Negm ME, Al Abboud MA, Elhussieny NI (2015) Efficacy of botanical fungicides against Curvularia lunata at molecular levels. J Plant Pathol Microbiol 6(7):1–7. https://doi.org/10.4172/2157-7471.1000289

    Article  CAS  Google Scholar 

  • Angulo-Escalante MÁ, Armenta-Reyes E, García-Estrada RS, Carrillo-Fasio JA, Salazar-Villa E, Valdéz-Torres JB (2009) Extracts of Swietenia humilis Zucc. seed with antifungal activity in Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Rev Mex Fitopatol 27(2):84–92

    Google Scholar 

  • Arazo R, Abonitalla MR, Gomez JMO, Quimada NE, Yamuta KMD, Mugot DA, Hanif MU (2017) Biodiesel production from Swietenia macrophylla (Mahogany) seeds. J High Educ Res Disc 1(2):8–19

    Google Scholar 

  • Arnason JT, MacKinnon S, Durst A, Philogene BJR, Hasbun C, Sanchez P et al (1993) Insecticides in tropical plants with non-neurotoxic modes of action. In: Downum KR, Romeo JT, Stafford HA (eds) Phytochemical potential of tropical plants, 1st edn. Springer, New York, pp 107–131

    Chapter  Google Scholar 

  • Champagne DE, Isman MB, Towers GHN (1989) Insecticidal activity of phytochemicals and extracts of the Meliaceae. In: Arnason JT, Philogène BJR, Morand P (eds) Insecticides of plant origin. American Chemical Society, Washington, DC, pp 95–109. Doi:https://doi.org/10.1021/bk-1989-0387.ch008

  • Cornelius JP, Wightman KE, Grogan JE, Ward SE (2004) Swietenia (American mahogany). Trop Ecos 1720–1726

  • Doehlemann G, Ökmen B, Zhu W, Sharon A (2017) Plant pathogenic fungi. In: Heitman J, Howlett BJ, Crous PW, Stukenbrock EH, James TY, Gow NAR (eds) The fungal kingdom. Microbiol spectrum, vol 5, issue 1, pp 703–726

  • Durai MV, Balamuniappan G, Geetha S (2016) Phytochemical screening and antimicrobial activity of leaf, seed and central-fruit-axis crude extract of Swietenia macrophylla King. J Pharmacogn Phytochem 5(3):181–186

    CAS  Google Scholar 

  • Ferreira APS, Pinho DB, Machado AR, Pereira OL (2014) First report of Curvularia eragrostidis causing postharvest rot on pineapple in Brazil. Plant Dis 98(9):1277

    Article  CAS  Google Scholar 

  • Fowles R, Mootoo B, Ramsewak R, Khan A, Ramsubhag A, Reynolds W, Nair M (2010) Identification of new limonoids from Swietenia and their biological activity against insects. Pest Manag Sci 66(12):1298–1303. https://doi.org/10.1002/ps.2013

    Article  CAS  PubMed  Google Scholar 

  • García-Osorio MS, Orozco-Gómez BA (2016) Etiología de enfermedades en el cultivo de piña (Ananas comosus L. cv. Monte lirio) y pruebas de antagonismo “in vitro” con Trichoderma. Thesis, Universidad Nacional Agraria, Managua, Nicaragua

  • Goun E, Cunningham G, Chu D, Nguyen C, Miles D (2003) Antibacterial and antifungal activity of Indonesian ethnomedical plants. Fitoterapia 74(6):592–596. https://doi.org/10.1016/S0367-326X(03)00117-5

    Article  CAS  PubMed  Google Scholar 

  • Govindachari TR, Suresh G, Banumathy B, Masilamani S, Gopalakrishnan G, Kumari GK (1999) Antifungal activity of some B, D-seco limonoids from two meliaceous plants. J Chem Ecol 25(4):923–933

    Article  CAS  Google Scholar 

  • Gupta PK (2017) Herbicides and Fungicides. In: Gupta RC (ed) Reproductive and developmental toxicology, 2nd edn. Academic Press, New York, pp 657–679

  • Gwinn KD (2018) Bioactive natural products in plant disease control. Stud Nat Prod Chem 56:229–246. https://doi.org/10.1016/b978-0-444-64058-1.00007-8

    Article  CAS  Google Scholar 

  • Hernández-Restrepo M, Madrid H, Tan YP, da Cunha KC, Gené J, Guarro J, Crous PW (2018) Multi-locus phylogeny and taxonomy of Exserohilum. Parsoonia 41:71–108. https://doi.org/10.3767/persoonia.2018.41.05

    Article  Google Scholar 

  • Hernández-Rodríguez ZG, Riley-Saldaña CA, González-Esquinca AR, Castro-Moreno M, De-la-Cruz-Chacón I (2018) Antifungal activity of Solanum extracts against phytopathogenic Curvularia lunata. J Plant Prot Res 58(3):311–315

    Google Scholar 

  • Ishii H, Hollomon DW (eds) (2015) Fungicide resistance in plant pathogens. Springer, Japan

    Google Scholar 

  • Jiménez A, Villarreal C, Toscano RA, Cook M, Arnason JT, Bye R, Mata R (1998) Limonoids from Swietenia humilis and Guarea grandiflora (Meliaceae) taken in part from the PhD and MS theses of C. Villarreal and MA Jiménez, respectively. Phytochemistry 49(7):1981–1988

    Article  Google Scholar 

  • Lan-Cheng Z, Yao-Jin A, Ruan-Hong C, Yu-De Y (2016) Identification of Curvularia clavata causing leaf spot on pineapple (Ananas comosus) in China. Can J Plant Pathol 38(2):250–253. https://doi.org/10.1080/07060661.2016.1158743

    Article  Google Scholar 

  • Li KM, Dong X, Ma YN, Wu ZH, Yan YM, Cheng YX (2019) Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 134:323–328. https://doi.org/10.1016/j.fitote.2019.02.022

    Article  CAS  PubMed  Google Scholar 

  • Majid MA, Rahman IMM, Shipar MAH, Uddin MH, Chowdhury R (2004) Physico-chemical characterization, antimicrobial activity and toxicity analysis of Swietenia mahagoni seed oil. Int J Agric Biol 6(2):350–354

    CAS  Google Scholar 

  • Manamgoda DS, Cai L, McKenzie HC, Crows PW, Madrid H, Chukeatirode E, Shivas RG, Tan YP, Hyde K (2012) A phylogenetic and taxonomic re-evaluation of the Bipolaris-Cochliobolus-Curvularia complex. Fungal Divers 56(1):131–144. https://doi.org/10.1007/s13225-012-0189-2

    Article  Google Scholar 

  • Manzo-Sánchez G, Pérez-Ocón R, Chan-Cupul W, Silva-Jiménez E, Sánchez-Rangel JC, Ayala-Zermeño MA, Galindo-Velasco E (2018) Antifungal activity of ethanolic extracts of propolis against Mycosphaerella fijiensis: an in vitro study. Sci Fungorum 47:13–24

    Article  Google Scholar 

  • Mena-Portales J, Heredia G (1995) Especies de Bipolaris y Curvularia halladas sobre hojas de Quercus y Liquidambar en el Estado de Veracruz, México. Rev Mex Micol 11:109–121

    Google Scholar 

  • Mikolajczak KL, Reed DK (1987) Extractives of seeds of the Meliaceae: effects on Spodoptera frugiperda (JE Smith), Acalymma vittatum (F.), and Artemia salina Leach. J Chem Ecol 13(1):99–111

    Article  CAS  Google Scholar 

  • Mohan RM, Jala RCR, Kaki SS, Prasad RBN, Rao BVSK (2016) Swietenia mahagoni seed oil: a new source for biodiesel production. Ind Crop Prod 90:28–31. https://doi.org/10.1016/j.indcrop.2016.06.010

    Article  CAS  Google Scholar 

  • Monroy R, Colín H (2001) La aplicación del conocimiento etnobotánico. El caso de un vivero en el estado de Morelos. R Geo Agr 21–31

  • Nassar AMK (2018) Pesticide alternatives use in Egypt: the concept and potential. In: Negm AM,Abu-hashim M (eds) Sustainability of agricultural environment in Egypt: part II, Springer Nature Switzerland, Cham, pp 111–143

  • Okorie DA, Taylor DA (1971) Limonoids from Swietenia humilis. Phytochem Rep 10:469–470

    Article  CAS  Google Scholar 

  • Omar S, Marcotte M, Fields P, Sanchez PE, Poveda L, Mata R et al (2007) Antifeedant activities of terpenoids isolated from tropical Rutales. J Stored Prod Res 43(1):92–96. https://doi.org/10.1016/j.jspr.2005.11.005

    Article  CAS  Google Scholar 

  • Ovalle-Magallanes B, Medina-Campos ON, Pedraza-Chaverri J, Mata R (2015) Hypoglycemic and antihyperglycemic effects of phytopreparations and limonoids from Swietenia humilis. Phytochemistry 110:111–119. https://doi.org/10.1016/j.phytochem.2014.11.004

    Article  CAS  PubMed  Google Scholar 

  • Rico-Rodriguez L, Gómez-Flores DE, Ortiz-Butron R, Cano-Europa E, Franco-Colín M (2014) Toxicological and pharmacological evaluation of the ethanolic extract of seeds Swietenia humilis Zucc (caobilla). Rev Mex Cienc Farm 45(2):77–83

    Google Scholar 

  • Rocha-Santos PR, Urzêdo-Leão E, Souza-Aguiar RW, Pereira-Melo M, Rodrigues-Santos G (2018) Morphological and molecular characterization of Curvularia lunata pathogenic to andropogon grass. Bragantia 77(2):326–332

    Article  Google Scholar 

  • SAS (2002) Statistical Analysis Software. Version 9.0

  • Secretary of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) (2017) Atlas agroalimentario 2017 (consulted in April 2019). https://www.gob.mx/siap/prensa/atlas-agroalimentario-2017

  • Segura-Correa R, Mata R, Anaya A, Hernández-Bautista B, Villena R, Soriano-García M et al (1993) New tetranortriterpenoids from Swietenia humilis. J Nat Prod 56(9):1567–1574

    Article  CAS  Google Scholar 

  • Shaari NA, Sulaiman R, Rahman RA, Bakar J (2018) Production of pineapple fruit (Ananas comosu) powder using foam mat drying: effect of whipping time and egg albumen concentration. J Food Process Preserv 42(2):e13467. https://doi.org/10.1111/jfpp.13467al.,2017

    Article  Google Scholar 

  • Shirsath L, Patil S, Patil UK (2018) Incidence of Leaf spot disease on cotton caused by Curvularia verruculosa and role of its hydrolytic enzymes in pathogenesis. Physiol Mol Biol Plants 24:711–714. https://doi.org/10.1007/s12298-018-0557-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun GM, Zhang XM, Soler A, Marie-Alphonsine P (2016) Nutritional composition of pineapple (Ananas comosus (L.) Merr.). In: Simmonds MSJ, Preedy VR (eds) Nutritional composition of fruit cultivars, 1st edn. Academic Press, London, pp 609–637

    Chapter  Google Scholar 

  • Volcy C (2008) Genesis and evolution of Koch postulates and their relationship with phytopathology. A review. Agron Colomb 26:107–115. https://doi.org/10.1007/s12298-018-0557-9

    Article  CAS  Google Scholar 

  • Wali N (2019) Pineapple (Ananas comosus). In: Mohammad SN, Sanches AS (eds) Nonvitamin and nonmineral nutritional supplements. Academic Press, London, pp 367–373

  • Walia S, Saha S, Tripathi V, Sharma KK (2017) Phytochemical biopesticides: some recent developments. Phytochem Rev 16(5):989–1007. https://doi.org/10.1007/s11101-017-9512-6

    Article  CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky J, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, California, E.U.A., pp 315–322

    Google Scholar 

  • Zhang Y, Xu H (2017) Recent progress in the chemistry and biology of limonoids. RSC Adv 7(56):35191–35220. https://doi.org/10.1039/C7RA04715K

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Programa para el Desarrollo Profesional Docente (PRODEP). MAMM thanks Consejo Nacional de Ciencia y Tecnología (CONACyT) for the Ph.D. Scholarship (631281). Authors express their gratitude to Dr. Juan A. Osuna and Sophia J. Iglesias Velasco for technical support as well as to M.C. Rafael Torres Colin (Herbario Nacional de México, MEXU) for the identification of the species.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hortensia Parra-Delgado or Wilberth Chan-Cupul.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maldonado-Michel, M.A., Muñiz-Valencia, R., Peraza-Campos, A.L. et al. Antifungal activity of Swietenia humilis (Meliaceae: Sapindales) seed extracts against Curvularia eragrostidis (Ascomycota: Dothideomycetes). J Plant Dis Prot 128, 471–479 (2021). https://doi.org/10.1007/s41348-020-00410-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41348-020-00410-1

Keywords

Navigation