Skip to main content
Log in

The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A simple reconfigurable ultrahigh-speed optical device which can be configured to optical NOT, AND, or XOR logic operation via slight variations in the input signals applied to two identical parallel highly nonlinear fibers (HNLFs) is described. The cross-phase modulation (XPM) in the HNLF and phase shifter are used in the design to realize a reconfigurable all-optical logic gate operating at 120 Gb/s. The proposed reconfigurable ultrahigh-speed all-optical logic device could play a crucial role in the realization of future all-optical high-performance flexible optical networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stampoulidis, L., Kehayas, E., Vyrsokinos, K., Apostolopoulos, D., Avramopoulos, H.: Design of all-optical contention detection and resolution for 40-Gb/s label-switched routers. IEEE Photon. Technol. Lett. 18(23), 2478–2480 (2006)

    Article  Google Scholar 

  2. Singh, D., Singh, S., Sharma, V., Singh, S., Quang Minh, N.G.O.: Design of XPM based all-optical contention detection circuit at 120 Gb/s. Optical Quantum Electron. 51, 215 (2019a)

    Article  Google Scholar 

  3. Mi, S.-C., Wang, H.-L.: Shu-Yu Zhang and Qian Gong, Research of all-optical NAND gates based on quantum dot semiconductor optical amplifiers cascaded connection XGM and XPM. Optik 202, 163551 (2020)

    Article  Google Scholar 

  4. Dhodhi, M.K., Tariq, S., Saleh, K.A.: Bottlenecks in next-generation DWDM-based optical networks. Comput. Commun. 24(17), 1726–1733 (2001)

    Article  Google Scholar 

  5. Liu, Y., Tangdiongga, E., Li, Z., Koonen, A.M., Waardt, H., Khoe, G.D., Shu, X., Bennion, I., Dorren, H.J.: Error-free 320-Gb/s all-optical wavelength conversion using a single semiconductor optical amplifier. J. Lightwave Technol. 25(1), 103–108 (2007)

    Article  Google Scholar 

  6. Singh, S., Lovkesh, Ye, X., Kaler, R.S.: Design of ultrafast encryption and decryption circuits for secured optical networks. IEEE J. Quantum Electron. 48(12), 1547–1553 (2012)

    Article  Google Scholar 

  7. Taya, S.A., Kullab, H.M., Qadoura, I.M.: Dispersion properties of slab waveguide with double negative material guiding layer and nonlinear substrate. J. Opt. Soc. Am. 30(7), 2008–2013 (2013)

    Article  Google Scholar 

  8. Hussein, A.J., Nassar, Z.M., Taya, S.A.: Dispersion properties of slab waveguides with a linear graded index film and a nonlinear substrate. Microsyst. Technol. (2020). https://doi.org/10.1007/s00542-020-05016-z

    Article  Google Scholar 

  9. Revathy, V., Boopathi, C.S., Selvakumar, K., Joesph Wilso, K.S., Taya, S.A., Aly, A.H., Rajan, M.S.: Nonlinear polarization in metal nanocomposite system based photonic crystal. Optik 176, 78–84 (2019)

    Article  Google Scholar 

  10. Modarressi, R., Mohan, S.: Control and management in next-generation networks: challenges and opportunities. IEEE Commun. Mag. 43(10), 92–104 (2000)

    Article  Google Scholar 

  11. Surinder Singh and Lovkesh: Ultrahigh speed optical signal processing logic based on an SOA-MZI. IEEE J. Sel. Top. Quantum Electron. 18(2), 970–977 (2012)

    Article  Google Scholar 

  12. Wang, J., Sun, Q., Sun, J., Zhang, X.: Experimental demonstration on 40Gbit/s all-optical multicasting logic XOR gate for NRZ-DPSK signals using four-wave mixing in highly nonlinear fiber. Opt. Commun. 282(13), 2615–2619 (2009)

    Article  Google Scholar 

  13. LovkeshGill, L.S.S.: Ultra-high-speed optical signal processing based on single SOA at 60Gb/s. Optik 122(11), 978–985 (2011)

    Article  Google Scholar 

  14. Li, L., Jian, Wu., Qiu, J., Bingbing, Wu., Kun, Xu., Hong, X., Li, Y., Lin, J.: Reconfigurable all-optical logic gate using four-wave mixing (FWM) in HNLF for NRZ-PolSK signal. Opt. Commun. 283(19), 3608–3612 (2010)

    Article  Google Scholar 

  15. Bingbing, Wu., Songnian, Fu., Wu, J., Shum, P., Ngo, N.Q., Xu, K., Hong, X., Lin, J.: Simultaneous implementation of all-optical OR and AND logic gates for NRZ/RZ/ CSRZ ON–OFF-keying signals. Opt. Commun. 283(3), 349–354 (2010)

    Article  Google Scholar 

  16. Lovkesh, A.M.: Implementation of optical logic gates at 160Gb/s using nonlinear effect of single SOA. Opt. Laser Technol. 70, 112–118 (2015)

    Article  Google Scholar 

  17. Velanas, P., Bogris, A., Syvridis, D.: Operation properties of a reconfigurable photonic logic gate based on cross phase modulation in highly nonlinear fibers. Opt. Fiber Technol. 15(1), 65–73 (2009)

    Article  Google Scholar 

  18. Singh, S., Singh, D., Sharma, V., Singh, S., Quang Minh, N.G.O.: Design of all optical contention detection circuit based on HNLF at the bit-rate of 120 Gb/s. Opt. Fiber Technol. 52, 101958 (2019b)

    Article  Google Scholar 

  19. Dimitriadou, E., Zoiros, K.E.: Proposal for all-optical NOR gate using single quantum-dot semiconductor optical amplifier-based Mach-Zehnder interferometer. Opt. Commun. 285(7), 1710–1716 (2012)

    Article  Google Scholar 

  20. Singh, K., Kaur, G.: Interferometric architectures based all-optical logic design methods and their implementations. Opt. Laser Technol. 69, 122–132 (2015)

    Article  Google Scholar 

  21. Filho, G.S.B., Correia, D.G., de Fraga, W.B., Guimarães, G.F.: Obtaining optical logic gates–OR, XOR, AND and logic functions using asymmetric Mach-Zehnder interferometer based on photonic crystal fiber. Opt. Laser Technol. 97, 370–378 (2017)

    Article  Google Scholar 

  22. Martins, F.L.B., Rodrigues, J.P.T., Neto, F.G.M., Nascimento, J.C., Coelho, A.G., Jr., Fraga, W.B.: Two and three-input all-optical logic gates on a planar three-core photonic crystal. Fiber Optik Int. J. Light Electron Opt. 154, 516–523 (2017)

    Article  Google Scholar 

  23. Song, Q., Cai, P., Wang, P.X.: An all-optical parallel scheme for the exclusive-or operation. Opt. Commun. 285(15), 3281–3283 (2012)

    Article  Google Scholar 

  24. Ferreira, C., Coelho, A.G., Jr., Sousa, J.R.R., Sobrinho, C.S., Mahalhaes, F.T.C.B., Filho, A.F.G.F., Gumaraes, G.F., Sales, J.C., Menezes, J.W.M., Sombra, A.S.B.: PAM-ASK optical logic gates in an optical fiber Sagnac interferometer. Opti. Laser Technol. 77, 116–125 (2016)

    Article  Google Scholar 

  25. Rani, P., Kalra, Y., Sinha, R.K.: Design of all optical logic gates in photonic crystal waveguides. Optik 126, 950–955 (2015)

    Article  Google Scholar 

  26. Araujo, N., Oliveira, A., Martins, F., Coelho, A., Fraga, W., Nascimento, J.: Two all-optical logic gates in a single photonic interferometer. Opt. Commun. 355, 485–491 (2015)

    Article  Google Scholar 

  27. Uthaya kumar, T., Raja, R.V.J., Porsezian, K.: Realization of all-optical logic gates through three core photonic crystal fiber. Opt. Commun. 296, 124–131 (2013)

    Article  Google Scholar 

  28. Mynbaev, D.K., Scheiner, L.L.: Fiber-Optic Communications Technology, vol. 1. Pearson, London (1988)

    Google Scholar 

  29. Kelley, P.L., Kaminow, I.P., Agrawal, G.P.: Nonlinear Fiber Optics, vol. 3. Academic, Cambridge (2001)

    Google Scholar 

  30. Agrawal, G.P.: Applications of Nonlinear Fiber Optics, vol. 2. Academic, Cambridge (2008)

    Google Scholar 

  31. Senior, J.M.: Optical Fiber Communications Principles and Practice, vol. 3. Pearson, London (2019)

    Google Scholar 

  32. Rendon-Salgado, R. and Gutierrez-Castrejon R., 160 Gb/s all-optical AND gate using bulk SOA turbo-switched Mach-Zehnder interferometer. Opt. Commun. 399, 77–89 (2017)

    Article  Google Scholar 

  33. https://fiber-optic-catalog.ofsoptics.com/item/ofs/highly-nonlinear-fiber. Accessed 1 Jan 1984

  34. Jeruchim, M.C.: Techniques for estimating the bit error rate in simulation of digital communication. IEEE J. Sel. Areas Commun. 2(1), 153–170

    Article  Google Scholar 

  35. Matsuda, T., Kotanigawa, T., Kataoka, T., Naka, A.: 54×42.7 Gbits L- and U-band WDM signal transmission experiments with in-line hybrid optical amplifiers. Electron. Lett. 40(6), 380–381 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science & Engineering Research Board, New Delhi for funding under Core Research Grant vide sanction no. file no. EMR/2017/004162, dated 01/11/18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lovkesh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovkesh, Sharma, V. & Singh, S. The design of a reconfigurable all-optical logic device based on cross-phase modulation in a highly nonlinear fiber. J Comput Electron 20, 397–408 (2021). https://doi.org/10.1007/s10825-020-01616-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01616-0

Keywords

Navigation