Skip to main content
Log in

Gate stacked dual-gate MISHEMT with 39 THz·V Johnson’s figure of merit for V-band applications

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this investigation, extensive simulations were performed for an AlGaN/GaN Dual-Gate MISHEMT configuration using ATLAS TCAD to optimize the device design for high power switching applications. We conducted a simulation study for the breakdown characteristics of a Dual-Gate AlGaN/GaN (DG)-MISHEMT with different gate lengths as explained in this paper. The optimized device with 0.25 µm gate length exhibits an breakdown voltage > 700 V and an cut-off frequency of 50 GHz when gate2 (G2) is attached to the source and bias is applied at gate1 (G1). We studied the impact on a breakdown characteristics and the frequency performance of different dimensions such as distance between the two gates (LGG), gate1-to-source distance (LG1S) and gate1-to-drain distance (LG1D). The optimized device design was further used to study the scattering-parameters for different gate combinations. Further improvement in breakdown voltage and Johnson’s figure of merit (fT × VBR) is achieved for the DG-MISHEMT with HfO2–Al2O3 as gate insulator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Zeng, F., An, J.X., Zhou, G., Li, W., Wang, H., Duan, T., Jiang, L., Yu, H.: A comprehensive review of recent progress on GaN high electron mobility transistors: devices, fabrication and reliability. Electronics. 7, 377 (2018). https://doi.org/10.3390/electronics7120377

    Article  Google Scholar 

  2. Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory and Techn. 60, 1764–1783 (2012). https://doi.org/10.1109/TMTT.2012.2187535

    Article  Google Scholar 

  3. Shrestha, N.M., Li, Y., Chang, E.Y.: Optimal design of the multiple-apertures-GaN-based vertical HEMTs with SiO2 current blocking layer. J. Comput. Electron. 15, 154–162 (2016). https://doi.org/10.1007/s10825-015-0738-5

    Article  Google Scholar 

  4. Mishra, U.K., Shen, L., Kazior, T.E., Wu, Y.F.: GaN-based RF power devices and amplifiers. Proc. IEEE. 96, 287–305 (2008). https://doi.org/10.1109/JPROC.2007.911060

    Article  Google Scholar 

  5. Shi, Y., Chen, W., Wang, F., Liu, J., Cui, X., Hu, G., Liu, C., Li, Z., Zhou, Q., Zhang, B.: A GaN enhancement-mode reverse blocking MISHEMT with MIS field-effect drain for bidirectional switch. J. Comput. Elect. 17, 238–245 (2018). https://doi.org/10.1007/s10825-017-1079-3

    Article  Google Scholar 

  6. Futong, C., Chao, C., Xingzhao, L.: Breakdown voltage enhancement of AlGaN/GaN high electron mobility transistors by polyimide/chromium composite thin film passivation. J. Semicond. 35, 034007 (2014). https://doi.org/10.1088/1674-4926/35/3/034007

    Article  Google Scholar 

  7. Crupi, G., Raffo, A., Marinković, Z., Avolio, G., Caddemi, A., Marković, V., Vannini, G., Schreurs, D.M.P.: An extensive experimental analysis of the kink effects in S22 and h21 for a GaN HEMT. IEEE Trans. Microw. Theory Technol. 62, 513–520 (2014). https://doi.org/10.1109/TMTT.2014.2299769

    Article  Google Scholar 

  8. Ando, Y., Okamoto, Y., Miyamoto, H., Nakayama, T., Inoue, T., Kuzuhara, M.: 10-W/mm AlGaN-GaN HFET with a field modulating plate. IEEE Electron Device Lett. 24, 289–291 (2003). https://doi.org/10.1109/LED.2003.812532

    Article  Google Scholar 

  9. Du, J., Jiang, Z., Bai, Z., Pan, P., Yu, Q.: Design and simulation of high breakdown voltage AlGaN/GaN HEMTs with a charged passivation layer for microwave power applications. J. Comput. Electron. 16, 741–747 (2017). https://doi.org/10.1007/s10825-017-0988-5

    Article  Google Scholar 

  10. Choi, Y.C., Pophristic, M., Cha, H.Y., Peres, B., Spencer, M.G., Eastman, L.F.: The effect of an Fe-doped GaN buffer on off-state breakdown characteristics in AlGaN/GaN HEMTs on Si substrate. IEEE Trans. Electron Devices. 53, 2926–2931 (2006). https://doi.org/10.1109/TED.2006.885679

    Article  Google Scholar 

  11. Selvaraj, S.L., Suzue, T., Egawa, T.: Breakdown enhancement of AlGaN/GaN HEMTs on 4-in silicon by improving the GaN quality on thick buffer layers. IEEE Electron Device Lett. 30, 587–589 (2009). https://doi.org/10.1109/LED.2009.2018288

    Article  Google Scholar 

  12. Liu, Y., Chai, C., Shi, C., Fan, Q., Liu, Y.: Optimization design on breakdown voltage of AlGaN/GaN high-electron mobility transistor. J. Semicond. 37, 124002 (2016). https://doi.org/10.1088/1674-4926/37/12/124002

    Article  Google Scholar 

  13. Im, K.S., Ha, J.B., Kim, K.W., Lee, J.S., Kim, D.S., Hahm, S.H., Lee, J.H.: Normally off GaN MOSFET based on AlGaN/GaN heterostructure with extremely high 2DEG density grown on silicon substrate. IEEE Electron Device Lett. 31, 192–194 (2010). https://doi.org/10.1109/LED.2009.2039024

    Article  Google Scholar 

  14. Liao, B., Zhou, Q., Qin, J., Wang, H.: Simulation of AlGaN/GaN HEMTs’ Breakdown voltage enhancement using gate field-plate, source field-plate and drain field plate. Electronics. 8, 406 (2019). https://doi.org/10.3390/electronics8040406

    Article  Google Scholar 

  15. Dora, Y., Chakraborty, A., McCarthy, L., Keller, S., DenBaars, S.P., Mishra, U.K.: High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett. 27, 713–715 (2006). https://doi.org/10.1109/LED.2006.881020

    Article  Google Scholar 

  16. Bahat-Treidel, E., Sidorov, V., Würfl, J., Tränkle, G.: Simulation of AlGaN/GaN HEMTs’ breakdown voltage enhancement using grating field plates. In: 2007 Simulation of Semi. Processes and Devices, Springer, Vienna, pp. 277–280 (2007). https://doi.org/10.1007/978-3-211-72861-1_66

  17. Bahat-Treidel, E., Hilt, O., Brunner, F., Sidorov, V., Würfl, J., Tränkle, G.: AlGaN/GaN/AlGaN DH-HEMTs breakdown voltage enhancement using multiple grating field plates (MGFPs). IEEE Trans. Electron Devices. 57, 1208–1216 (2010). https://doi.org/10.1109/TED.2010.2045705

    Article  Google Scholar 

  18. Kabemura, T., Ueda, S., Kawada, Y., Horio, K.: Enhancement of Breakdown Voltage in AlGaN/GaN HEMTs: field Plate Plus High-k Passivation layer and high acceptor density in buffer layer. IEEE Trans. Electron Devices. 65, 3848–3854 (2018). https://doi.org/10.1109/TED.2018.2857774

    Article  Google Scholar 

  19. Wang, R., Wu, Y., Chen, K.J.: Gain improvement of enhancement-mode AlGaN/GaN high-electron-mobility transistors using dual-gate architecture. Jpn. J. Appl. Phys. 47, 2820–2823 (2008). https://doi.org/10.1143/JJAP.47.2820

    Article  Google Scholar 

  20. Rawal, A.D., Sharma, S., Kapoor, S., Liashram, R., Chaubey, R.K., Vinayak, S., Sharma, R.K.: Design and fabrication of multi-finger field plate for enhancement of AlGaN/GaN HEMT breakdown voltage. Defence Sci. J. 68, 290–294 (2018). https://doi.org/10.14429/dsj.68.12134

    Article  Google Scholar 

  21. Kai, Z., Meng-Yi, C., Xiao-Yi, L., Sheng-Lei, Z., Li-Yuan, Y., Xue-Feng, Z., Xiao-Hua, M., Yue, H.: Field plate structural optimization for enhancing the power gain of GaN-based HEMTs. Chin. Phy. B. 22, 097303 (2013). https://doi.org/10.1088/1674-1056/22/9/097303

    Article  Google Scholar 

  22. Chiu, H.C., Yang, C.W., Wang, H.C., Huang, F.H., Kao, H.L., Chien, F.T.: Characteristics of AlGaN/GaN HEMTs with various field-plate and gate-to-drain extensions. IEEE Trans. Electron Devices. 60, 3877–3882 (2013). https://doi.org/10.1109/TED.2013.2281911

    Article  Google Scholar 

  23. Ahsan, S.A., Ghosh, S., Sharma, K., Dasgupta, A., Khandelwal, S., Chauhan, Y.S.: Capacitance modeling in dual field-plate power GaN HEMT for accurate switching behavior. IEEE Trans. Electron Devices 63, 565–572 (2015). https://doi.org/10.1109/TED.2015.2504726

    Article  Google Scholar 

  24. Vetury, R., Shealy, J.B., Green, D.S., McKenna, J., Brown, J.D., Gibb, S.R., Leverich, K., Garber, P.M., Poulton, M.J.: Performance and RF reliability of GaN-on-SiC HEMT’s using dual-gate architectures. In: 2006 IEEE MTT-S Internat. Microwave Symp. Digest. pp. 714–717. IEEE. (2006). https://doi.org/10.1109/MWSYM.2006.249733

  25. Kashiwa, T., Katoh, T., Ishida, T., Kojima, Y., Mitsui, Y.: A high-performance Ka-band monolithic variable-gain amplifier using dual-gate HEMTs. IEEE Micro. Guided Wave Lett. 7, 251–252 (1997). https://doi.org/10.1109/75.605494

    Article  Google Scholar 

  26. Schwantuschke, D., Brückner, P., Quay, R., Mikulla, M., Ambacher, O.: High-gain millimeter-wave AlGaN/GaN transistors. IEEE Trans. Electron Devices. 60, 3112–3118 (2013). https://doi.org/10.1109/TED.2013.2272180

    Article  Google Scholar 

  27. Wang, H.C., Su, H.F., Luc, Q.H., Lee, C.T., Hsu, H.T., Chang, E.Y.: Improved linearity in AlGaN/GaN HEMTs for millimeter-wave applications by using dual-gate fabrication. ECS J. Solid-State Sci. Tech. 6, S3106–S3109 (2017). https://doi.org/10.1149/2.0251711jss

    Article  Google Scholar 

  28. Aust, M.V., Sharma, A.K., Chen, Y.C., Wojtowicz, M.: Wideband dual-gate GaN HEMT low noise amplifier for front-end receiver electronics. In: 2006 IEEE Compound Semi. Integrated Circuit Symp. pp. 89–92. IEEE (2006). https://doi.org/10.1109/CSICS.2006.319921

  29. Santhakumar, R., Thibeault, B., Higashiwaki, M., Keller, S., Chen, Z., Mishra, U.K., York, R.A.: Two-stage high-gain high-power distributed amplifier using dual-gate GaN HEMTs. IEEE Trans. Microw. Theory and Techn. 59, 2059–2063 (2011). https://doi.org/10.1109/TMTT.2011.2144996

    Article  Google Scholar 

  30. Gao, T., Xu, R., Zhang, K., Kong, Y., Zhou, J., Kong, C., Dong, X., Chen, T., Hao, Y.: Dual-gate AlGaN/GaN MIS-HEMTs using Si3N4 as the gate dielectric. Semi. Sci. Tech. 30, 115010 (2015). https://doi.org/10.1088/0268-1242/30/11/115010

    Article  Google Scholar 

  31. Chen, C.H., Coffie, R., Krishnamurthy, K., Keller, S., Rodwell, M., Mishra, U.K.: Dual-gate AlGaN/GaN modulation-doped field-effect transistors with cut-off frequencies fT > 60 GHz. IEEE Electron Device Lett. 21, 549–551 (2000). https://doi.org/10.1109/55.887461

    Article  Google Scholar 

  32. Singh, P., Kumari, V., Saxena, M., Gupta, M.: Optimization of gate oxide of dual-gate MISHEMTs for enhanced DC performance. In: 2018 4th International Conference on Devices, Circuits and Systems (ICDCS), pp. 121–125. IEEE (2018). https://doi.org/10.1109/ICDCSyst.2018.8605124

  33. Singh, P., Kumari, V., Saxena, M., Gupta, M.: TCAD-Based Assessment of Dual-Gate MISHEMT with Sapphire, SiC, and Silicon Substrate. IETE Tech. Rev. (2019). https://doi.org/10.1080/02564602.2019.1699455

    Article  Google Scholar 

  34. Pengelly, R.S., Wood, S.M., Milligan, J.W., Sheppard, S.T., Pribble, W.L.: A review of GaN on SiC high electron-mobility power transistors and MMICs. IEEE Trans. Microw. Theory Tech. 60, 1764–1783 (2012). https://doi.org/10.1109/TMTT.2012.2187535

    Article  Google Scholar 

  35. Murugapandiyan, P., Rajya Lakshmi, V., Wasim, M., Meenakshi Sundaram, K.: Investigation of ultra-scaled AlN/GaN/InGaN double heterojunction HEMT for high-frequency applications. Int. J. Electron. Lett. (2019). https://doi.org/10.1080/21681724.2019.1636295

    Article  Google Scholar 

  36. Ranjan, K., Arulkumaran, S., Ng, G.I., Vicknesh, S.: High Johnson’s figure of merit (8.32 THz· V) in 0.15-µm conventional T-gate AlGaN/GaN HEMTs on silicon. App. Phy. Express 7(4), 044102 (2014). https://doi.org/10.7567/APEX.7.044102

    Article  Google Scholar 

  37. Downey, B.P., Meyer, D.J., Katzer, D.S., Roussos, J.A., Pan, M., Gao, X.: SiNx/InAlN/AlN/GaN MIS-HEMTs with 10.8  THz V Johnson Figure of Merit. IEEE Electron device Lett. 35(5), 527–529 (2014). https://doi.org/10.1109/led.2014.2313023

    Article  Google Scholar 

  38. Xie, H., Liu, Z., Gao, Y., Ranjan, K., Lee, K.E., Ng, G.I.: CMOS-compatible GaN-on-Si HEMTs with cut-off frequency of 210 GHz and high Johnson’s figure-of-merit of 8.8 THz-V. App. Phys. Express. 13, 026503 (2020). https://doi.org/10.7567/1882-0786/ab659f

    Article  Google Scholar 

  39. Singh, P., Kumari, V., Saxena, M., Gupta, M.: Breakdown voltage analysis of Dual-Gate MISHEMT: TCAD based assessment. In: 2019 IEEE Asia-Pacific Microwave Conference (APMC). pp. 1307–1309 IEEE (2019). https://doi.org/10.1109/APMC46564.2019.9038776

  40. Silvaco ATLAS TCAD tool, version 5.24.1.R

  41. Hua, M., Liu, C., Yang, S., Liu, S., Lu, Y., Fu, K., Dong, Z., Cai, Y., Zhang, B., Chen, K.J.: 650-V GaN-based MIS-HEMTs using LPCVD-SiNx as passivation and gate dielectric. In: 2015 IEEE 27th International Symp. on Power Semicond. Dev. & IC’s (ISPSD). pp. 241–244. IEEE (2015). https://doi.org/10.1109/ISPSD.2015.7123434

  42. Uren, M.J., Nash, K.J., Balmer, R.S., Martin, T., Morvan, E., Caillas, N., Delage, S.L., Ducatteau, D., Grimbert, B., De Jaeger, J.C.: Punch-through in short-channel AlGaN/GaN HFETs. IEEE Trans. Electron Devices 53(2), 395–398 (2006). https://doi.org/10.1109/ted.2005.862702

    Article  Google Scholar 

  43. Bahat-Treidel, E., Hilt, O., Brunner, F., Wurfl, J., Trankle, G.: Punchthrough-voltage enhancement of AlGaN/GaN HEMTs using AlGaN double-heterojunction confinement. IEEE Trans. Electron Devices 55(12), 3354–3359 (2008). https://doi.org/10.1109/ted.2008.2006891

    Article  Google Scholar 

  44. Cheney, D.J., Douglas, E.A., Liu, L., Lo, C.F., Xi, Y.Y., Gila, B.P., Ren, F., Horton, D., Law, M.E., Smith, D.J., Pearton, S.J.: Reliability studies of AlGaN/GaN high electron mobility transistors. Semicond. Sci. Technol. 28(7), 074019 (2013). https://doi.org/10.1088/0268-1242/28/7/074019

    Article  Google Scholar 

  45. Luo, J., Zhao, S.L., Mi, M.H., Chen, W.W., Hou, B., Zhang, J.C., Ma, X.H., Hao, Y.: Effect of gate length on breakdown voltage in AlGaN/GaN high-electron-mobility transistor. Chin. Phy. B. 25, 027303 (2015). https://doi.org/10.1088/1674-1056/25/2/027303

    Article  Google Scholar 

  46. Moon, J.S., Grabar, R., Brown, D., Alvarado-Rodriguez, I., Wong, D., Schmitz, A., Fung, H., Chen, P., Kang, J.C., Kim, S., Oh, T.: > 70% power-added-efficiency dual-gate, cascode GaN HEMTs without harmonic tuning. IEEE Electron Dev. Lett. 37, 272–275 (2016). https://doi.org/10.1109/LED.2016.2520488

    Article  Google Scholar 

  47. Ahsan, S.A., Ghosh, S., Khandelwal, S., Chauhan, Y.S.: Modeling of kink-effect in RF behaviour of GaN HEMTs using ASM-HEMT model. In: 2016 IEEE International Conference on Electr. Dev. and Solid-State Circuits (EDSSC). pp. 426–429. IEEE (2016). https://doi.org/10.1109/EDSSC.2016.7785299

Download references

Acknowledgements

This work was supported by Ministry of Science and Technology, Department of Science and Technology [Grant number SR/WOS-A/ET-143/2017], Government of India and one of the authors, Preeti Singh would like to acknowledge, Department of Electronic Science, University of Delhi South Campus, New Delhi-110021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mridula Gupta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P., Kumari, V., Saxena, M. et al. Gate stacked dual-gate MISHEMT with 39 THz·V Johnson’s figure of merit for V-band applications. J Comput Electron 20, 556–567 (2021). https://doi.org/10.1007/s10825-020-01604-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-020-01604-4

Keywords

Navigation