Skip to main content
Log in

Functionalized Gold Nanoparticles Based Optical, Surface Plasmon Resonance-Based Sensor for the Direct Determination of Mitoxantrone Anti-cancer Agent from Real Samples

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

This study represents a simple and facile method for the fabrication of gold nanoparticles (AuNPs) using Cephradine (Cep) drug as a capping agent. Synthesized Cep-AuNPs have been characterized using different modern analytical techniques such as UV–Vis spectroscopy, X-ray diffractometry, and Atomic Force Microscopy. The estimated average size of synthesized gold nanoparticles was found up to 30 nm. These Cep-AuNPs has been used for the highly selective and sensitive colorimetric sensing for the mitoxantrone (MX) detection. The linear range of proposed colorimetric sensor responded to MX in the range of 10–100 µg/L. The detection and quantification limit of the sensor was 3.5 µg/L and 11.9 µg/L, respectively. The developed sensor was highly selected and highly efficient for MX detection as compared with other coexisting compounds such as 5Florourical, Capecitabine, Methotrexate (MTX), Zoledronic Acid. This developed sensor was successfully applied for the detection of MX from the real biological samples. The developed  colorimetric sensor is sensitive, selective, cheaper and no need for sample preparation and easy to operate. No need expansive instruments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. Hong and Q. Cheng (2012). Adv. Chem. Eng. Sci. 2, 453.

    Article  CAS  Google Scholar 

  2. G. An and M. E. Morris (2010). J. Pharm. Biomed. Anal. 51, 750.

    Article  CAS  Google Scholar 

  3. P. Pattoneri, G. Pela, E. Montanari, I. Pesci, P. Moruzzi, and A. Borghetti (2007). Eur. J. Echocardiogr. 8, 144.

    Article  Google Scholar 

  4. C. Panousis and D. R. Phillips (1994). Nuclei Acids Res. 22, 1342.

    Article  CAS  Google Scholar 

  5. B. S. Parker, S. M. Cutts, C. Cullinane, and D. R. Phillips (2000). Nuclei Acids Res. 28, 982.

    Article  CAS  Google Scholar 

  6. H. N. Alkaysi, A. M. Gharaibeh, and M. Salem (1990). Ther. Drug Monitor. 12, 191.

    Article  CAS  Google Scholar 

  7. J. L. Johnson, A. Ahmad, S. Khan, Y.-F. Wang, A. W. Abu-Qare, J. E. Ayoub, A. Zhang, and I. Ahmad (2004). J. Chromatogr. B 799, 149.

    Article  CAS  Google Scholar 

  8. P. Zhang, G. Ling, J. Sun, Y. Sun, X. Pu, Z. Wang, and Z. He (2010). J. Chromatogr. B 878, 2260.

    Article  CAS  Google Scholar 

  9. S. Han and H. Wang (2010). J. Chromatogr. B 878, 2901.

    Article  CAS  Google Scholar 

  10. S. Liu, F. Wang, Z. Liu, X. Hu, A. Yi, and H. Duan (2007). Anal. Chim. Acta 601, 101.

    Article  CAS  Google Scholar 

  11. F. Yu, L. Chen, and F. Chen (2008). Microchim. Acta 161, 185.

    Article  CAS  Google Scholar 

  12. H. Yao, M. Zhang, W. Zeng, X. Zeng, and Z. Zhang (2014). Spectrochim. Acta A Mol. Biomol. Spectrosc. 117, 645.

    Article  CAS  Google Scholar 

  13. X. Jiang, D.-Q. Feng, G. Liu, D. Fan, and W. Wang (2016). Sens. Actuators B: Chem. 232, 276.

    Article  CAS  Google Scholar 

  14. S. Rauf, J. Gooding, K. Akhtar, M. Ghauri, M. Rahman, M. Anwar, and A. Khalid (2005). J. Pharm. Biomed. Anal. 37, 205.

    Article  CAS  Google Scholar 

  15. S. Wang, T. Peng, and C. F. Yang (2003). Biophys. Chem. 104, 239.

    Article  CAS  Google Scholar 

  16. F. U. Hernandez, S. P. Morgan, B. R. Hayes-Gill, D. Harvey, W. Kinnear, A. Norris, D. Evans, J. G. Hardman, and S. Korposh (2016). IEEE Trans. Biomed. Eng. 63, 1985.

    Article  Google Scholar 

  17. G. Schatz, ACS Publications (2010).

  18. S. Alex and A. Tiwari (2015). J. Nanosci. 15, 1869.

    CAS  Google Scholar 

  19. L. Dykman, N. Khlebtsov (2017).

  20. Y.-S. Chen, Y.-C. Hung, W.-H. Lin, and G. S. Huang (2010). Nanotechnology 21, 195101.

    Article  Google Scholar 

  21. M. Lin, D. Pan, X. Hu, H. Han, and F. Li (2015). Sens. Actuators B: Chem. 219, 164.

    Article  CAS  Google Scholar 

  22. Y. Liu, M. Wei, Y. Hu, L. Zhu, and J. Du (2018). Sens. Actuators B: Chem. 255, 544.

    Article  CAS  Google Scholar 

  23. J. Manjunatha (2018). J. Surf. Sci. Technol. 34, 74.

    Article  CAS  Google Scholar 

  24. N. Li, Y. . Ma. . C. Yang, L. Guo, and X. Yang (2005). Biophys. Chem. 116, 199.

    Article  CAS  Google Scholar 

  25. J.-R. Wei, H.-Y. Chen, W. Zhang, J.-X. Pan, F.-Q. Dang, Z.-Q. Zhang, and J. Zhang (2017). Sens. Actuators B: Chem. 244, 31.

    Article  CAS  Google Scholar 

  26. A. Saljooqi, T. Shamspur, and A. Mostafavi (2019). IEEE Sens. J. 19, 4364.

    Article  CAS  Google Scholar 

  27. X. Gao, Y. Lu, S. He, X. Li, and W. Chen (2015). Anal. Chim. Acta 879, 118.

    Article  CAS  Google Scholar 

  28. S. K. Tripathy, J. Y. Woo, and C.-S. Han (2013). Sens. Actuators B: Chem. 181, 114.

    Article  CAS  Google Scholar 

  29. S. S. Memon, A. Nafady, A. R. Solangi, A. M. Al-Enizi, M. R. Shah, S. T. Sherazi, S. Memon, M. Arain, M. I. Abro, and M. I. Khattak (2018). Sens. Actuators B: Chem. 259, 1006.

    Article  CAS  Google Scholar 

  30. S. S. Hassan, A. R. Solangi, T. G. Kazi, M. S. Kalhoro, Y. Junejo, Z. A. Tagar, and N. H. Kalwar (2012). J. Electroanal. Chem. 682, 77.

    Article  CAS  Google Scholar 

  31. S. S. Hassan, A. Nafady, A. R. Solangi, M. S. Kalhoro, M. I. Abro, and S. T. H. Sherazi (2015). Sens. Actuators B: Chem. 208, 320.

    Article  CAS  Google Scholar 

  32. T. Shaikh, F. N. Talpur, A. R. Khaskeli, M. H. Agheem, M. R. Shah, T. H. Sherazi, and S. Siddiqui (2017). J. Electron. Mater. 46, 5957.

    Article  CAS  Google Scholar 

  33. S. S. Hassan, A. R. Solangi, M. H. Agheem, Y. Junejo, N. H. Kalwar, and Z. A. Tagar (2011). J. Hazard. Mater. 190, 1030.

    Article  CAS  Google Scholar 

  34. M. S. Jagrani, S. A. Mahesar, S. T. H. Sherazi, M. S. Qureshi, R. A. Soomro, S. A. Lakho, S. S. Memon, and A. H. Kori (2018). Sens. Lett. 16, 8.

    Article  Google Scholar 

  35. K. Dai, L. Lu, C. Liang, Q. Liu, G. Zhu (2014). Appl. Catal. B-Environ. 156–157, 331

    Article  Google Scholar 

  36. J. Zhang, Y. Jin, C. Li, Y. Shen, L. Han, Z. Hu, X. Di, Z. Liu (2009). Appl. Catal. B-Environ. 91, 11.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarfaraz Ahmed Mahesar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagirani, M.S., Mahesar, S.A., Uddin, S. et al. Functionalized Gold Nanoparticles Based Optical, Surface Plasmon Resonance-Based Sensor for the Direct Determination of Mitoxantrone Anti-cancer Agent from Real Samples. J Clust Sci 33, 241–247 (2022). https://doi.org/10.1007/s10876-020-01948-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01948-8

Keywords

Navigation