Skip to main content

Advertisement

Log in

The Crystal Disorder into ZnO with Addition of Bromine and It’s Outperform Role in the Photodegradation of Methylene Blue

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this research work, bromine (Br) is successfully doped into ZnO nanostructures using solvothermal method. The morphology, crystalline features, and composition of Br doped ZnO nanostructures were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X ray spectroscopy (EDX) respectively. These newly prepared nanostructured materials were tested as photocatalysts for the photodegradation of methylene blue (MB) in aqueous solution under UV light. The kinetic rate constants were observed in the order (20% Br/ZnO > 15% Br/ZnO > 10% Br/ZnO > 5% Br/ZnO >pristine ZnO), thus they are indicating that the increasing Br dopant level has linear effect on the photodegradation of MB. The photocatalytic degradation efficiency of 60% was achieved for the pristine ZnO during the irradiation of UV light for 5 h, however 20% Br doped ZnO nanostructures has shown enhanced degradation efficiency of 97.63% during the irradiation of UV light for short interval of time of 2.2 h. The 20% Br/ZnO describes the highest rate constant value of (24.13 × 10−3 min−1), for time period of 2.2 h and this values is about 8 and 4 times higher than the pristine ZnO (3.72 × 10−3 min−1) and 5% Br/ZnO (6.13 × 10−3 min−1), respectively. The obtained results of 20% Br doped ZnO sample are superior or equal in performance than the recently reported works. The catalytic mechanism is also proposed and it indicates the role of electrons coming from the bromine ion might act as radical for the degradation of MB. The present approach is simpler, environment friendly, scalable and could be of great consideration for the diverse energy and environment related applications.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Pascariu, N. O. Airinei, L. Olaru, and V. Nica (2016). Ceram. Int. 42, 6775–6781.

    CAS  Google Scholar 

  2. M. A. Ahmed, E. E. El-Katori, and Z. H. Gharni (2013). J. Alloy Compd. 553, 19–29.

    CAS  Google Scholar 

  3. M. Kazemi and M. R. Mohammadizadeh (2012). Chem. Eng. Res. Des. 10, 1473–1479.

    Google Scholar 

  4. R. A. Palominos, M. A. Mondaca, A. Giraldo, G. Peñuela, M. Pérez, and H. D. Mansilla (2009). Catal. Today 144, 100–105.

    CAS  Google Scholar 

  5. Z. Cetecioglu, B. Ince, M. Gros, S. Rodriguez, D. Barcelo, D. Orhon, and O. Ince (2013). Water Res. 47, 2959–2969.

    CAS  PubMed  Google Scholar 

  6. C. V. Gómez-Pacheco, M. Sánchez-Polo, J. Rivera-Utrilla, and J. López-Peñalver (2011). Chem. Eng. J. 178, 115–121.

    Google Scholar 

  7. A. Baban, A. Yediler, and N. K. Ciliz (2010). J. Chem. Mater. Sci. 38, 84–90.

    CAS  Google Scholar 

  8. T. Robinson, G. McMullan, R. Marchant, and P. Nigam (2011). Bioresour. Technol. 77, 247–255.

    Google Scholar 

  9. S. H. S. Chan, T. W. Yeong, J. C. Juan, and C. Y. Teh (2011). J. Chem. Technol. Biotechnol. 86, 1130–1158.

    CAS  Google Scholar 

  10. J. Y. Liang, J. M. P. Yuann, Z. J. Hsie, S. T. Huang, and C. C. Chen (2017). J. Photochem. Photobiol. B 174, 355–363.

    CAS  PubMed  Google Scholar 

  11. J. Katsuda, H. Ooshima, M. Azuma, and J. Kato (2006). J. Biosci. Bioeng. 102, 220–226.

    CAS  PubMed  Google Scholar 

  12. B. Choudhary, A. Goyal, and S. L. Khokra (2009). Int. J. Pharm. Pharm. Sci. 1, 159–162.

    CAS  Google Scholar 

  13. S. Song, L. Xu, Z. He, H. Ying, J. Chen, X. Xiao, and B. Yan (2008). J. Hazard. Mater. 152, 1301–1308.

    CAS  PubMed  Google Scholar 

  14. D. Yanan, S. Yanlei, C. Wenjuan, P. Jinming, Y. Zhang, and Z. Jiang (2011). Chin. J. Chem. Eng. 19, 863–869.

    Google Scholar 

  15. A. B. Bielinska, S. Stolte, M. Matzke, A. Fabianska, J. Maszkowska, and M. Kolodziejska (2012). J. Hazard. Mater. 221, 264–274.

    Google Scholar 

  16. S. Din, D. Mao, Y. Yang, F. Wang, L. Meng, M. Han, and H. He (2017). Appl. Catal. B 210, 386–399.

    Google Scholar 

  17. J. Jeong, W. Song, W. J. Cooper, J. Jung, and J. Greaves (2014). J. Cent. South Univ. 21, 310–316.

    Google Scholar 

  18. R. R. Kumar, J. T. Lee, and J. Y. Cho (2012). J. Korean Soc. Appl. Biol. Chem. 55, 701–709.

    CAS  Google Scholar 

  19. J. Xu, Y. G. Mao, T. Liu, and Y. Peng (2018). CrystEngComm 20, 2292–2298.

    CAS  Google Scholar 

  20. A. Kubacka, M. G. Fernandez, and G. Colon (2012). Chem. Rev. 112, 1555–1614.

    CAS  PubMed  Google Scholar 

  21. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and Y. Ye (2012). Adv. Mater. 24, 229–251.

    CAS  PubMed  Google Scholar 

  22. Z. Yi, J. Ye, N. Kikugawa, T. Kako, S. Ouyang, W. Stuart, and H. Yang (2013). Opt. Express 21, 991–996.

    Google Scholar 

  23. S. Gardin, R. Signorini, A. Pistore, G. D. Giustina, and G. Brusatin (2010). J. Phys. Chem. 114, 7646–7652.

    CAS  Google Scholar 

  24. A. R. Arreola, M. S. Tizapa, F. Zurita, J. P. Morán-Lázaro, R. C. Valderrama, J. L. Rodríguez-López, and A. Carreon-Alvarez (2020). Environ. Technol. 41, 1023–1033.

    PubMed  Google Scholar 

  25. V. Kumar, V. Chauhan, J. Ram, R. Gupta, S. Kumar, P. Chaudhary, B. C. Yadav, S. Ojha, I. Sulania, and R. Kumar (2020). Surf. Coat. Technol. 392, 125768.

    CAS  Google Scholar 

  26. K. Sahu, K. H. Rahamn, and A. K. Kar (2020). J. Surf. Coat. Technol. 392, 1257–1268.

    Google Scholar 

  27. Z. Zhigang (2007). J Appl. Phys. Lett. 91, 0619–0621.

    Google Scholar 

  28. L. Cunlong, H. Ceng, Z. Yubo, Z. Zhigang, and W. Ming (2011). J. Appl. Phys. 102, 601–604.

    Google Scholar 

  29. Z. Zhigang and T. Xiaosheng (2005). J. Am. Chem. Soc. 127, 7480–7488.

    Google Scholar 

  30. D. Ghosh, S. Kapri, and S. Bhattacharyya (2016). J. Appl. Mater. Interfaces 51, 35496–35504.

    Google Scholar 

  31. S. Shehu Imam, R. Adnan, and N. H. MohdKaus (2018). Toxicol. Environ. Chem. 100, 518–539.

    CAS  Google Scholar 

  32. M. Sudha and M. Rajarajan (2013). J. Appl. Chem. 3, 45–53.

    CAS  Google Scholar 

  33. S. O. Fatin, H. N. Lim, W. T. Tan, and N. M. Huang (2012). J. Electrochem. Sci. 7, 9074–9084.

    CAS  Google Scholar 

  34. M. Nirmala, M. G. Nair, K. Rekha, and A. Anukaliani (2010). Afr. J. Basic Appl. Sci. 2, 161–166.

    Google Scholar 

  35. S. Baruah, S. K. Pal, and J. Dutta (2012). Nanosci. Nanotechnol. Asia 2, 90–102.

    CAS  Google Scholar 

  36. E. Nazar and E. Ammar (2013). J. Appl. Ind. Sci. 1, 32–35.

    Google Scholar 

  37. M. I. H. Chowdhury, M. S. Hossain, M. A. S. Azad, and M. Z. Islam (2018). Int. J. Sci. Eng. Res. 9, 261–269.

    Google Scholar 

  38. T. A. Saleh and V. K. Gupta (2017). J. Assoc. Arab Univ. Basic Appl. Sci. 24, 10–18.

    Google Scholar 

  39. K. Dai, C. Liang, L. J. Dai, G. Zhu, and Z. Liu (2017). Appl. Nanosci. 7, 253–259.

    Google Scholar 

  40. S. Sakthivel, B. Neppolian, M. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan (2003). Sol. Energy Mater. Sol. Cells 77, 65–82.

    CAS  Google Scholar 

  41. A. K. Zak, A. M. Hashim, and M. Darroudi (2014). Nanoscale Res. Lett. 9, 1–6.

    CAS  Google Scholar 

  42. J. Jeevanandam, A. Barhoum, C. Yen, and S. Chan (2018). J. Nanotechnol. 9, 1050–1074.

    CAS  Google Scholar 

  43. R. Wang, J. H. Xin, Y. Yang, H. Liu, L. Xu, and J. Hu (2004). Appl. Surf. Sci. 227, 312–317.

    CAS  Google Scholar 

  44. A. Sharma, M. Chakraborty, R. Thangavel, and G. Udayabhanu (2017). J. Sol–Gel Sci. Technol. 15, 3217–3227.

    Google Scholar 

  45. W. Wang, A. Ai, and Q. Yu (2017). Sci. Rep. 7, 1–11.

    PubMed  PubMed Central  Google Scholar 

  46. M. A. Bhatti, A. A. Shah, K. F. Almani, A. Tahira, S. E. Chalangar, A. Dad Chandio, O. Nur, M. Willander, and Z. H. Ibupoto (2019). Ceram. Int. 45, 23289–23297.

    CAS  Google Scholar 

  47. Z. R. Muslim, K. A. Aadim, and R. F. Kadhim (2017). Int. J. Basic Appl. Sci. 06, 1–7.

    Google Scholar 

  48. M. Ahmad, E. Ahmed, Y. Zhang, N. R. Khalid, J. Xu, M. Ullah, and Z. Hong (2010). Chem. Rev. 110, 6595–6663.

    Google Scholar 

  49. R. Khan, M. S. Hassan, H. S. Cho, A. Y. Polyakov, M. S. Khil, and I. H. Lee (2014). Mater. Lett. 133, 224–227.

    CAS  Google Scholar 

  50. B. N. Meethal, N. Pullanjiyot, and S. Sindhu (2017). Mater. Des. 130, 42.

    Google Scholar 

  51. Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani (2012). J. Nanosci. Nanotechnol. 12, 7181–7186.

    CAS  PubMed  Google Scholar 

  52. Q. I. Rahman, M. Ahmad, S. K. Misra, and M. Lohani (2013). Mater. Lett. 91, 170–174.

    CAS  Google Scholar 

  53. K. Rekha, M. Nirmala, M. G. Nair, and A. Anukaliani (2010). Struct. Opt. Phys. B 405, 3180–3185.

    CAS  Google Scholar 

  54. R. Chauhan, A. Kumar, and R. P. Chaudhary (2012). J. Sol–Gel Sci. Technol. 63, 546–553.

    CAS  Google Scholar 

  55. X. Chen, H. Li, M. Chen, W. Li, and R. Snyders (2019). Mater. Chem. Phys. 227, 368–374.

    CAS  Google Scholar 

  56. K. A. Isai and V. S. Shrivastava (2019). SN Appl. Sci.. https://doi.org/10.1007/s42452-019-1279-5.

    Article  Google Scholar 

  57. P. S. Chauhan, R. Kant, A. Rai, A. Gupta, and S. Bhattacharya (2019). Mater. Sci. Semicond. Process. 89, 6–17.

    CAS  Google Scholar 

  58. P. Yugandhar, T. Vasavi, B. Shanmugam, P. Uma Maheswari Devi, K. Sathyavelu Reddy, and N. Savithramma (2019). Mater. Res. Express 6, 065034.

    CAS  Google Scholar 

Download references

Acknowledgements

We extend our sincere appreciation to the Researchers Supporting Project Number (RSP-2020/79) at King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayman Nafady or Zafar Hussain Ibupoto.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest in this research work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ujan, Z.A., Tahira, A., Mahesar, A.A. et al. The Crystal Disorder into ZnO with Addition of Bromine and It’s Outperform Role in the Photodegradation of Methylene Blue. J Clust Sci 33, 281–291 (2022). https://doi.org/10.1007/s10876-020-01958-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01958-6

Keywords

Navigation