Skip to main content

Advertisement

Log in

Investigation of Photodynamic Therapy on Breast Cancer Cell Lines Using LaF3:Tb Nanoparticles Conjugated with Meso-tetra(4-carboxyphenyl) Porphine

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) is a clinically appropriate therapeutic procedure with a minimum invasion that can apply a selective cytotoxic effect toward intended cells. Generally, PDT involves the administration of light and a photosensitive drug (photosensitizer). In the presence of oxygen molecules, the excited photosensitizer can produce reactive oxygen species (ROS) to kill the cancerous cells. In PDT, drug or light can administrate in high doses at short time (acute PDT) or in low doses in a period of time (metronomic PDT). In addition, to solve the problem of light access to the tissues, new modality that named Self Light PDT (SLPDT), was introduced recently. According to the studies, LaF3:Tb conjugated with meso-tetra(4-carboxyphenyl) porphine (MTCP) nanosystem can function as an efficient nanosystem in SLPDT due to the ability of energy transfer between the light-exited NPs and MTCP to emissions which can generate ROS. In this research besides synthesizing and characterizing LaF3:Tb-MTCP nanosystems, we also studied energy transfer feasibility under UV radiation between NP and PS. Afterward, we tried to design several in vitro test using breast cancer cell lines, T47D and mcf-7, to understanding LaF3:Tb conjugated MTCP potentials for SLPDT or mPDT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Fearon, F. Strasser, S. Anker, I. Bosaeus, Eduardo B et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. (2011). https://www.sciencedirect.com/science/article/pii/S1470204510702187. Accessed 17 Sept 2020.

  2. A. Jemal, R. Siegel, J. Xu, and E. Ward (2010). Cancer statistics, 2010. CA. Cancer J. Clin. 60 (5), 277–300. https://doi.org/10.3322/caac.20073.

    Article  PubMed  Google Scholar 

  3. J. Bergh (2009). Quo vadis with targeted drugs in the 21st century? J. Clin. Oncol. 27 (1), 2–5. https://doi.org/10.1200/JCO.2008.18.8342.

    Article  PubMed  Google Scholar 

  4. T. Fojo, G. Christine (2009). How much is life worth: cetuximab, non–small cell lung cancer, and the $440 billion question. J. Natl. Cancer Inst. https://academic.oup.com/jnci/article-abstract/101/15/1044/916789. Accessed 17 Sept 2020.

  5. H. Tracy (2006).Targeted cancer therapies lagging. JAMA. https://jamanetwork.com/journals/jama/article-abstract/203771. Accessed 17 Sept 2020.

  6. T. J. Dougherty (2002). An update on photodynamic therapy applications. J. Clin. Laser Med. Surg. 20 (1), 3–7. https://doi.org/10.1089/104454702753474931.

    Article  PubMed  Google Scholar 

  7. R. Allison, C. Sibata (2010). Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagn. Photodyn. Ther. https://www.sciencedirect.com/science/article/pii/S157210001000027X. Accessed 17 Sept 2020.

  8. P. Agostinis, et al. (2011). Photodynamic therapy of cancer: an update. CA. Cancer J. Clin. 61 (4), 250–281. https://doi.org/10.3322/caac.20114.

    Article  PubMed  PubMed Central  Google Scholar 

  9. A. Konstantinov, A. Peskin, et al. (1987). Superoxide generation by the respiratory chain of tumor mitochondria. BBA. https://www.sciencedirect.com/science/article/pii/0005272887902064. Accessed 17 Sept 2020.

  10. M. Benhar, D. Engelberg, and A. Levitzki (2002). ROS, stress-activated kinases and stress signaling in cancer. EMBO Rep. 3 (5), 420–425. https://doi.org/10.1093/embo-reports/kvf094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. W. C. Copeland, J. T. Wachsman, F. M. Johnson, and J. S. Penta (2002). Mitochondrial DNA alterations in cancer. Cancer Investig. 20 (4), 557–569. https://doi.org/10.1081/CNV-120002155.

    Article  CAS  Google Scholar 

  12. A. T. Y. Lau, Y. Wang, and J. F. Chiu (2008). Reactive oxygen species: current knowledge and applications in cancer research and therapeutic. J. Cell. Biochem. 104 (2), 657–667. https://doi.org/10.1002/jcb.21655.

    Article  CAS  PubMed  Google Scholar 

  13. H. Pelicano, D. Carney, P. Huang (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updates. https://www.sciencedirect.com/science/article/pii/S136876460400007X. Accessed 17 Sept 2020.

  14. H. Kolarova, P. Nevrelova et al. (2008). Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. Gen. Physiol. Biophys. https://www.researchgate.net/profile/Katerina_Tomankova2/publication/51419145_Production_of_reactive_oxygen_species_after_photodynamic_therapy_by_porphyrin_sensitizers/links/00b7d533c4c7d129af000000/Production-of-reactive-oxygen-species-after-photodynamic-therapy-by-porphyrin-sensitizers.pdf. Accessed 17 Sept 2020.

  15. B. Li, J. Zhang (2016). Emerging strategies for enhanced photodynamic therapy. https://ieeexplore.ieee.org/abstract/document/8680109/. Accessed 17 Sept 2020.

  16. S. K. Bisland, L. Lilge, A. Lin, R. Rusnov, and B. C. Wilson (2007). Metronomic photodynamic therapy as a new paradigm for photodynamic therapy: rationale and preclinical evaluation of technical feasibility for treating malignant brain tumors. Photochem. Photobiol. 80 (1), 22–30. https://doi.org/10.1111/j.1751-1097.2004.tb00044.x.

    Article  Google Scholar 

  17. M. Firczuk et al. (2011). Approaches to improve photodynamic therapy of cancer. https://pdfs.semanticscholar.org/3ee6/37ea72b769e49fa4fe4d7f6cf8d836f7f3cd.pdf. Accessed 17 Sept 2020.

  18. C. Wilson, Photonic and non-photonic based nanoparticles in cancer imaging and therapeutics, in J. J. Dubowski and S. Tanev (eds.), Photon-based nanoscience and nanobiotechnology (Springer, Netherlands, 2007), pp. 121–157.

    Google Scholar 

  19. D. Chatterjee, L. Fong, Y. Zhang (2008). Nanoparticles in photodynamic therapy: an emerging paradigm. Drug Deliv. Rev. https://www.sciencedirect.com/science/article/pii/S0169409X08002263. Accessed 17 Sept 2020.

  20. W. Chen, J. Zuang (2006). Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. https://www.ingentaconnect.com/content/asp/jnn/2006/00000006/00000004/art00038. Accessed 17 Sept 2020.

  21. W. Chen (2008). Nanoparticle self-lighting photodynamic therapy for cancer treatment. J. Biomed. Nanotechnol. 4 (4), 369–376. https://doi.org/10.1166/jbn.2008.001.

    Article  Google Scholar 

  22. Q. Wang, Y. You, R. D. Ludescher, and Y. Ju (2010). Syntheses of optically efficient (La 1 À x À y Ce x Tb y )F 3 nanocrystals via a hydrothermal method. J. Lumin. 130, 1076–1084. https://doi.org/10.1016/j.jlumin.2010.01.028.

    Article  CAS  Google Scholar 

  23. Y. Liu, W. Chen, S. Wang, and A. G. Joly (2008). Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. https://doi.org/10.1063/1.2835701.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Y. Liu, W. Chen, S. Wang, A. G. Joly, S. Westcott, and B. K. Woo (2008). X-ray luminescence of LaF3: Tb3+ and LaF3: Ce3+, Tb3+ water-soluble nanoparticles. J Appl Phys. https://doi.org/10.1063/1.2890148.

    Article  Google Scholar 

  25. T. Mosmann (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.458.9709&rep=rep1&type=pdf. Accessed 17 Sept 2020.

  26. S. G. Gaurkhede (2020). Microwave synthesis and studies room temperature optical properties of LaF3: Ce3+, Pr3+, Nd3+ nanocrystals. Nanosyst. Phys. Chem. Math. 11 (1), 117–122. https://doi.org/10.17586/2220-8054-2020-11-1-117-122.

    Article  CAS  Google Scholar 

  27. E. M. A. Hussein (2020). Radiation mechanics: principles and practice. https://books.google.com/books?hl=en&lr=&id=3XQ2jplbsegC&oi=fnd&pg=PP1&dq=%22MECHANISMS%22+Esam+M.A.+Hussein,+in+Radiation+Mechanics,+2010&ots=0rNDoLbFBF&sig=jKiGAuKXZrLuC28mDYgsswFG5Jk#v=onepage&q=%22MECHANISMS%22. Accessed 18 Sept 2020.

  28. J. Kreuter (1996). Nanoparticles and microparticles for drug and vaccine delivery. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc1167690/. Accessed 17 Sept 2020.

  29. R. Singh, J. Lillard (2009). Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. https://www.sciencedirect.com/science/article/pii/S001448000800141X. Accessed 17 Sept 2020

  30. W. Zauner, N. Farrow, A. Haines (2001). In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J. Control Release. https://www.sciencedirect.com/science/article/pii/S0168365900003588. Accessed 17 Sept 2020.

  31. G. Ramyalakshmi, P. Venkatesh, D. Hepcy Kalarani, K. Ravindra Reddy, E. Archana, and S. Manjuvani (2012). A review on inductively coupled plasma mass spectroscopy. Int. J. Drug Dev. Res. 4 (4), 69–79.

    Google Scholar 

  32. M.-C. Chirio-Lebrun and M. Prats (1998). Fluorescence resonance energy transfer (FRET): theory and experiments. Biochem. Educ. 26 (4), 320–323. https://doi.org/10.1016/S0307-4412(98)80010-1.

    Article  CAS  Google Scholar 

  33. C. E. Cross, et al. (1987). Oxygen radicals and human disease. Davis conference. Ann. Internal Med. 107 (4), 526–545. https://doi.org/10.7326/0003-4819-107-4-526.

    Article  CAS  Google Scholar 

  34. R. Zangar, D. Davydov, S. Verma (2004). Mechanisms that regulate production of reactive oxygen species by cytochrome P450. Toxicol. Appl. Pharmacol. https://www.sciencedirect.com/science/article/pii/S0041008X04001231. Accessed 17 Sept 2020.

  35. A. A. Caro and A. I. Cederbaum (2004). Oxidative stress, toxicology, and pharmacology of CYP2E1. Annu. Rev. Pharmacol. Toxicol. 44, 27–42. https://doi.org/10.1146/annurev.pharmtox.44.101802.121704.

    Article  CAS  PubMed  Google Scholar 

  36. J.-H. Xiao, D.-M. Xiao, D.-X. Chen, Y. Xiao, Z.-Q. Liang, and J.-J. Zhong (2012). Polysaccharides from the medicinal mushroom cordyceps taii show antioxidant and immunoenhancing activities in a d-galactose-induced aging mouse model. Evid Based Complement Altern Med. https://doi.org/10.1155/2012/273435.

    Article  Google Scholar 

  37. A. Castano, P. Mroz, M. Hamblin (2006). Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer. https://www.nature.com/articles/nrc1894. Accessed 17 Sept 2020.

  38. A. Castano, T. Demidova, M. Hamblin (2004). Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. https://www.sciencedirect.com/science/article/pii/S1572100005000074. . Accessed 17 Sept 2020.

  39. “Flow Cytometry Fundamental Principle,” Boster Biological Technology, (2020). https://www.bosterbio.com/protocol-and-troubleshooting/flow-cytometry-principle. Accessed 18 Sept 2020.

  40. K. Adams, A. Rainbow, B. Wilson, G. Singh (1999). In vivo resistance to photofrin-mediated photodynamic therapy in radiation-induced fibrosarcoma cells resistant to in vitro Photofrin-mediated photodynamic therapy. J. Photochem. Photobiol. https://www.sciencedirect.com/science/article/pii/S1011134499000470. Accessed 17 Sept 2020.

  41. C.-W. Lin, J. R. Shulok, S. D. Kirley, L. Cincotta, and J. W. Foley (1991). Lysosomal localization and mechanism of uptake of nile blue photosensitizers in tumor cells. https://cancerres.aacrjournals.org/content/51/10/2710.short. Accessed 17 Sept 2020.

  42. X. Wang (2001). The expanding role of mitochondria in apoptosis. Genes Dev. http://genesdev.cshlp.org/content/15/22/2922.short. Accessed 17 Sept 2020.

  43. A. Casas, G. Di Venosa, T. Hasan (2011). Mechanisms of resistance to photodynamic therapy. Curr. Med. Chem. https://www.ingentaconnect.com/content/ben/cmc/2011/00000018/00000016/art00011. Accessed 17 Sept 2020.

  44. X. Xue, X. Liang (2012). Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer. https://www.ncbi.nlm.nih.gov/pmc/articles/pmc3777470/. Accessed 17 Sept 2020.

  45. G. Singh, O. Alqawi, and M. Espiritu (2010). Metronomic PDT and cell death pathways. Methods Mol. Biol. 635, 65–78. https://doi.org/10.1007/978-1-60761-697-9_5.

    Article  CAS  PubMed  Google Scholar 

  46. B. Wilson, S. Bisland et al. (2003) Metronomic photodynamic therapy (mPDT): concepts and technical feasibility in brain tumor. Biomed. Opt. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/4952/0000/Metronomic-photodynamic-therapy-mPDT--concepts-and-technical-feasibility-in/10.1117/12.479435.short. Accessed 17 Sept 2020.

  47. T. Ohyashiki, M. Nunomura (1999). Detection of superoxide anion radical in phospholipid liposomal membrane by fluorescence quenching method using 1, 3-diphenylisobenzofuran. BBA. https://www.sciencedirect.com/science/article/pii/S0005273699001194. Accessed 29 Oct 2020.

  48. M. Wozniak, F. Tanfani, E. Bertoli et al. (1991) A new fluorescence method to detect singlet oxygen inside phospholipid model membranes. BBA. https://www.sciencedirect.com/science/article/pii/000527609190304Z. Accessed 29 Oct 2020.

  49. Y. Seto, H. Ohtake, M. Kato (2016). Development of fluorometric reactive oxygen species assay for photosafety evaluation. Toxicol. In Vitro. https://www.sciencedirect.com/science/article/pii/S0887233316300558. Accessed 29 Oct 2020.

Download references

Acknowledgements

The authors would like to thank the Iran Nanotechnology Initiative Council and Research Council of University of Tehran for their patronages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Jalal Zargar.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zareian, S., Zargar, S.J., Safarian, S. et al. Investigation of Photodynamic Therapy on Breast Cancer Cell Lines Using LaF3:Tb Nanoparticles Conjugated with Meso-tetra(4-carboxyphenyl) Porphine. J Clust Sci 33, 215–225 (2022). https://doi.org/10.1007/s10876-020-01951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01951-z

Keywords

Navigation