Skip to main content
Log in

Reactive Bilayers by Self-activated Electroless Nickel-Phosphorous Deposition on Pure Aluminum

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Nickel-aluminum bilayers and multilayers are commonly used in reactive systems because of their high heat of mixing. Traditionally, the layers are sputter deposited, an expensive and time-consuming process. In this article, a chemical reduction technique, electroless nickel-phosphorous (EN) deposition, is used for formation of the Ni-Al bilayer using a pure Al substrate. Traditionally, EN deposition on Al requires surface activation due to the native oxide layer. Here, we tune the bath pH to dissolve this oxide layer, such that deposition can be obtained without surface activation. Deposition kinetics is measured by tracking the mass change with time and temperature, and we extracted the activation energies at two different pH values. At pH 7, the energy is 98.7 kJ/mol and reduces to 55 kJ/mol at a pH of 8. The process can also be extended to aluminum powders and flakes in order to form reactive core–shell structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.P. Adams, Thin Solid Films 576, 98 (2015).

    Article  Google Scholar 

  2. T.P. Weihs, Metallic Films for Electronic, Optical and Magnetic Applications, 1st ed. (Cambridge: Woodhead Publishing, 2013), pp. 160–243.

    Google Scholar 

  3. J.C. Trenkle, L.J. Koerner, M.W. Tate, S.M. Gruner, T.P. Weihs, and T.C. Hufnagel, Appl. Phys. Lett. 93, 081903 (2008).

    Article  Google Scholar 

  4. J. Wang, E. Besnoin, A. Duckham, S.J. Spey, M.E. Reiss, O.M. Knio, and T.P. Weihs, J. Appl. Phys. 9, 248 (2004).

    Article  Google Scholar 

  5. P. Swaminathan, M.D. Grapes, K. Woll, S.C. Barron, D.A. LaVan, and T.P. Weihs, J. Appl. Phys. 113, 143509 (2013).

    Article  Google Scholar 

  6. M.D. Grapes, T. LaGrange, K. Woll, B.W. Reed, G.H. Campbell, D.A. LaVan, and T.P. Weihs, APL Mater. 2, 116102 (2014).

    Article  Google Scholar 

  7. A.S. Edelstein, R.K. Everett, G.Y. Richardson, S.B. Qadri, E.I. Altman, J.C. Foley, and J.H. Perepezko, J. Appl. Phys. 76, 7850 (1994).

    Article  Google Scholar 

  8. K. Barmak, C. Michaelsen, and G. Lucadamo, J. Mater. Res. 12, 133 (1997).

    Article  Google Scholar 

  9. A.J. Gavens, D. van Heerden, A.B. Mann, M.E. Reiss, and T.P. Weihs, J. Appl. Phys. 87, 1255 (2000).

    Article  Google Scholar 

  10. L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino, Acta Mater. 47, 1901 (1999).

    Article  Google Scholar 

  11. A.K. Stover, N.M. Krywopusk, and T.P. Weihs, J. Mater. Sci. 49, 5821 (2014).

    Article  Google Scholar 

  12. A. Hadjiafxenti, I.E. Gunduz, C. Tsotsos, T. Kyratsi, C.C. Doumanidis, and C. Rebholz, Intermetallics 18, 2219 (2010).

    Article  Google Scholar 

  13. S.V. Lakshman, J.D. Gibbins, E.R. Wainwright, and T.P. Weihs, Powder Technol. 343, 87 (2019).

    Article  Google Scholar 

  14. A. Brenner and G.E. Riddell, J. Res. Natl. Bur. Stand. 37, 31 (1946).

    Article  Google Scholar 

  15. C.A. Loto, Silicon 8, 177 (2016).

    Article  Google Scholar 

  16. J. Sudagar, J. Lian, and W. Sha, J. Alloys Compd. 571, 183 (2013).

    Article  Google Scholar 

  17. K.H. Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, and P.M. Kavimani, Metall. Mater. Trans. A 37, 1917 (2006).

    Article  Google Scholar 

  18. M. Palaniappa and S.K. Seshadri, Wear 265, 735 (2008).

    Article  Google Scholar 

  19. J.N. Balaraju, S. Millath Jahan, C. Anandan, and K.S. Rajam, Surf. Coat. Technol. 200, 4885 (2006).

    Article  Google Scholar 

  20. J. Novakovic, P. Vassilou, K. Samara, and T. Argyropoulos, Surf. Coat. Technol. 201, 895 (2006).

    Article  Google Scholar 

  21. V. Vitry, A.-F. Kanta, and F. Delaunois, Surf. Coat. Technol. 206, 1879 (2011).

    Article  Google Scholar 

  22. S. Yae, K. Ito, T. Hamada, N. Fukumuro, and H. Matsuda, Plating Surf. Finish. 92, 58 (2005).

    Google Scholar 

  23. M. Palaniappa and S.K. Seshadri, Mater. Sci. Eng. A 460–461, 638 (2007).

    Article  Google Scholar 

  24. V. Vitry, A.F. Kanta, and F. Delaunois, Mater. Sci. Eng. B 175, 266 (2010).

    Article  Google Scholar 

  25. J.N. Balaraju, T.S.N.S. Narayanan, and S.K. Seshadri, J. Appl. Electrochem. 33, 807 (2003).

    Article  Google Scholar 

  26. B.S. Choudhury, R.S. Sen, B. Oraon, and G. Majumdar, J. Surf. Eng. 25, 410 (2009).

    Article  Google Scholar 

  27. A.F. Kanta, V. Vitry, and F. Delaunois, J. Alloys Compd. 486, L21 (2009).

    Article  Google Scholar 

  28. F. Delaunois, J.P. Petitjean, and M. Jabob-Duliere, Surf. Coat. Techol. 124, 201 (2000).

    Article  Google Scholar 

  29. S. Furukawa and M. Mehregany, Sensor Actuat. A Phys. 56, 261 (1996).

    Article  Google Scholar 

  30. T. Cetinkaya, M. Uysal, and H. Akbulut, Appl. Surf. Sci. 334, 94 (2015).

    Article  Google Scholar 

  31. Q. Zhang, M. Wu, and W. Zhao, Surf. Coat. Technol. 192, 213 (2005).

    Article  Google Scholar 

  32. A. Chakraborty, N.M. Nair, A. Adekar, and P. Swaminathan, Surf. Coat. Techol. 370, 106 (2019).

    Article  Google Scholar 

  33. F. Mohtaram, V. Mottaghitalab, and G. Baghersalimi, J. Text. Inst. 108, 1888 (2017).

    Article  Google Scholar 

  34. X. Tang, C. Bi, C. Han, and B. Zhang, Mater. Lett. 63, 840 (2009).

    Article  Google Scholar 

  35. R.H. Guo, S.X. Jiang, C.W.M. Yuen, C.F. Ng, J.W. Lan, and G.H. Zheng, Fiber. Polym. 13, 1037 (2012).

    Article  Google Scholar 

  36. N. Backovic, M. Jancic, and L.J. Radonjic, Thin Solid Films 59, 1 (1979).

    Article  Google Scholar 

  37. A.R. Rahimi, H. Modarres, and M. Abdouss, Surf. Eng. 25, 367 (2009).

    Article  Google Scholar 

  38. V. Vitry, A. Sens, A.F. Kanta, and F. Delaunois, Surf. Coat. Technol. 206, 3421 (2012).

    Article  Google Scholar 

  39. I. Ohno, O. Wakabayashi, and S. Haruyama, J. Electrochem. Soc. 132, 2323 (1985).

    Article  Google Scholar 

  40. C.C. Lee and T.C. Chou, Electrochim. Acta 40, 965 (1995).

    Article  Google Scholar 

  41. L. Wu, Z. Yang, and G. Qin, J. Alloys Compd. 694, 1133 (2017).

    Article  Google Scholar 

  42. G.O. Mallory and J.B. Hajdu, Electroless Plating: Fundamentals and Applications, Reprint ed. (Orlando: American Electroplaters and Surface Finishers Society, 1990), pp. 57–101.

    Google Scholar 

  43. X. Liu, W. Richtering, and R. Akolkar, J. Electrochem. Soc. 164, D498 (2017).

    Article  Google Scholar 

  44. Z.L. Xiao, C.Y. Han, U. Welp, H.H. Wang, W.K. Kwok, G.A. Willing, J.M. Hiller, R.E. Cook, D.J. Miller, and G.W. Crabtree, Nano Lett. 2, 1293 (2002).

    Article  Google Scholar 

  45. A. Ganapathi, P. Swaminathan, and L. Neelakantan, ACS Appl. Nano Mater. 2, 5981 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

XRD and SEM imaging with EDS measurements was carried out at the Department of Metallurgical and Materials Engineering, IIT Madras. Weight change measurements were done in the Department of Physics, IIT Madras. The authors are also grateful to Dr. Lakshman Neelakantan, Head, Corrosion Engineering and Materials Electrochemistry Lab, Department of Metallurgical and Materials Engineering, for help with preparation of the pure aluminum foils and for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parasuraman Swaminathan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narayanan, M., Harsha, A., Chakraborty, A. et al. Reactive Bilayers by Self-activated Electroless Nickel-Phosphorous Deposition on Pure Aluminum. JOM 73, 574–579 (2021). https://doi.org/10.1007/s11837-020-04520-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04520-x

Navigation