Skip to main content
Log in

An Investigation of Spray Deposited CdO Films and CdO/p-Si Heterojunction at Different Substrate Temperatures

  • Advanced Coating and Thin Film Materials for Energy, Aerospace and Biological Applications
  • Published:
JOM Aims and scope Submit manuscript

A Correction to this article was published on 29 January 2021

This article has been updated

Abstract

In this study, CdO films were successfully obtained by using a homemade chemical spray pyrolysis technique. The crystal structures of the CdO thin films improved due to an increase in the substrate temperature when the spray time was kept constant. Additionally, CdO film deposited at 250°C exhibited amorphous crystal structure. The surface morphology of the samples was evaluated by scanning electron microscope (SEM) and it was observed that well-defined granules started to be clearly seen when the substrate temperature increased. Optical properties of CdO films were also investigated by using an ultraviolet–visible (UV–Vis) spectrophotometer, and the optical band gap of CdO varied from 2.57 eV to 2.73 eV with increasing substrate temperature. The electrical performance of the CdO films in the Au/CdO/p-Si device were determined by IV measurements. According to the results, it was found that diode parameters depend on the changing properties of CdO in terms of the substrate temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

References

  1. R. Chandiramouli and B.G. Jeyaprakash, Solid State Sci. 16, 102 (2013).

    Article  Google Scholar 

  2. B.B. Çırak, Vacuum 177, 109375 (2020).

    Article  Google Scholar 

  3. P. Margan and M. Haghighi, Ultrason. Sonochem. 40, 323 (2018).

    Article  Google Scholar 

  4. M. Abbas, W. Tawfik, and J. Chen, Ultrason. Sonochem. 40, 577 (2018).

    Article  Google Scholar 

  5. C.V. Reddy, B. Babu, and J. Shim, J. Phys. Chem. Solids 112, 20 (2018).

    Article  Google Scholar 

  6. T. Terasako, T. Fujiwara, Y. Nakata, M. Yagi, and S. Shirakata, Thin Solid Films 528, 237 (2013).

    Article  Google Scholar 

  7. G. Turgut, J. Mater. Sci.: Mater. Electron. 28, 16992 (2017).

    Google Scholar 

  8. C.H. Bhosale, A.V. Kambale, A.V. Kokate, and K.Y. Rajpure, Mater. Sci. Eng. B 122, 67 (2005).

    Article  Google Scholar 

  9. P. Velusamy, R.R. Babu, K. Ramamurthi, E. Elangovan, J. Viegas, and M. Sridharan, Sens. Actuators B Chem. 255, 871 (2018).

    Article  Google Scholar 

  10. T. Terasako, K. Ohmae, M. Yamane, and S. Shirakata, Thin Solid Films 572, 20 (2014).

    Article  Google Scholar 

  11. P. Dhivya, A.K. Prasad, and M. Sridharan, Int. J. Hydrogen Energy 37, 18575 (2012).

    Article  Google Scholar 

  12. R.R. Salunkhe, D.S. Dhawale, T.P. Gujar, and C.D. Lokhande, Mater. Res. Bull. 44, 364 (2009).

    Article  Google Scholar 

  13. M. Ortega, G. Santana, and A. Morales-Acevedo, Solid State Electron. 44, 1765 (2000).

    Article  Google Scholar 

  14. M. Caglar and F. Yakuphanoglu, J. Phys. D Appl. Phys. 42, 045102 (2009).

    Article  Google Scholar 

  15. A.A.M. Farag, M. Cavas, and F. Yakuphanoglu, Mater. Chem. Phys. 132, 550 (2012).

    Article  Google Scholar 

  16. Ş. Karataş and F. Yakuphanoğlu, J. Alloys Compd. 537, 6 (2012).

    Article  Google Scholar 

  17. B.A. Gozeh, A. Karabulut, A. Yildiz, A. Dere, B. Arif, and F. Yakuphanoglu, Silicon 12, 1673 (2020).

    Article  Google Scholar 

  18. P. Patil, P. Chigare, S. Sadale, T. Seth, D. Amalnerkar, and R. Kawar, Mater. Chem. Phys. 80, 667 (2003).

    Article  Google Scholar 

  19. S. Nakao, N. Yamada, T. Hitosugi, Y. Hirose, T. Shimada, and T. Hasegawa, Phys. Status Solidi 8, 543 (2011).

    Article  Google Scholar 

  20. Y. Huang, D. Li, J. Feng, G. Li, and Q. Zhang, J. Sol-Gel Sci. Technol. 54, 276 (2010).

    Article  Google Scholar 

  21. G. Turgut, E.F. Keskenler, S. Aydın, E. Sönmez, S. Doğan, B. Düzgün, and M. Ertuğrul, Superlattices Microstruct. 56, 107 (2013).

    Article  Google Scholar 

  22. T. Serin, N. Serin, S. Karadeniz, H. Sarı, N. Tuğluoğlu, and O. Pakma, J. Non Cryst. Solids 352, 209 (2006).

    Article  Google Scholar 

  23. E. Elangovan and K. Ramamurthi, J. Optoelectron. Adv. Mater. 5, 45 (2003).

    Google Scholar 

  24. G. Turgut, E.F. Keskenler, S. Aydın, M. Yılmaz, S. Doğan, and B. Düzgün, Phys. Scr. 87, 035602 (2013).

    Article  Google Scholar 

  25. G. Turgut and E. Sönmez, Superlattices Microstruct. 69, 175 (2014).

    Article  Google Scholar 

  26. R. Ferro and J.A. Rodrıguez, Thin Solid Films 347, 295 (1999).

    Article  Google Scholar 

  27. H.H. Afify, N.M. Ahmed, M.Y. Tadros, and F.M. Ibrahim, J. Electr. Syst. Inf. Technol. 1, 119 (2014).

    Article  Google Scholar 

  28. D.J. Seo, J. Korean Phys. Soc. 45, 1575 (2004).

    Google Scholar 

  29. R.-D. Sun, J. Electrochem. Soc. 146, 2117 (1999).

    Article  Google Scholar 

  30. D. Tatar, G. Turgut, and B. Düzgün, Rom. Rep. Phys. 58, 143 (2013).

    Google Scholar 

  31. G. Turgut, E.F. Keskenler, S. Aydın, D. Tatar, E. Sonmez, S. Dogan, and B. Duzgun, Rare Met. 33, 433 (2014).

    Article  Google Scholar 

  32. W. Clegg, A.J. Blake, J.M. Cole, J.S.O. Evans, P. Main, S. Parsons, and D.J. Watkin, Crystal Structure Analysis (Oxford: Oxford University Press, 2009).

    Book  Google Scholar 

  33. G. Turgut and E. Sönmez, Metall. Mater. Trans. A 45, 3675 (2014).

    Article  Google Scholar 

  34. M. Mhadhbi, M. Khitouni, L. Escoda, J.J. Suñol, and M. Dammak, J. Nanomater. 2010, 1 (2010).

    Article  Google Scholar 

  35. M. Thambidurai, N. Muthukumarasamy, A. Ranjitha, and D. Velauthapillai, Superlattices Microstruct. 86, 559 (2015).

    Article  Google Scholar 

  36. F. Zahedi, R.S. Dariani, and S.M. Rozati, Mater. Sci. Semicond. Process. 16, 245 (2013).

    Article  Google Scholar 

  37. Ş. Karataş and F. Yakuphanoğlu, Mater. Chem. Phys. 138, 72 (2013).

    Article  Google Scholar 

  38. Ş. Aydoğan, K. Çınar, H. Asıl, C. Coşkun, and A. Türüt, J. Alloys Compd. 476, 913 (2009).

    Article  Google Scholar 

  39. Ş. Aydoğan, M. Sağlam, and A. Türüt, Appl. Surf. Sci. 250, 43 (2005).

    Article  Google Scholar 

  40. M. Çavaş, Advances in Intelligent Systems and Computing (Berlin: Springer, 2018), pp. 520–528.

    Google Scholar 

  41. F. Aslan, H. Esen, and F. Yakuphanoglu, Optik (Stuttg) 197, 163203 (2019).

    Article  Google Scholar 

  42. X. Ren, P. Gao, X. Kong, R. Jiang, P. Yang, Y. Chen, Q. Chi, and B. Li, J. Colloid Interface Sci. 530, 1 (2018).

    Article  Google Scholar 

  43. H.H. Güttler and J.H. Werner, Appl. Phys. Lett. 56, 1113 (1990).

    Article  Google Scholar 

  44. C. Hadj Belgacem and A.A. El-Amine, Silicon 10, 1063 (2018).

    Article  Google Scholar 

  45. J.H. Werner, H.H. Güttler, and U. Rau, MRS Proc. 260, 311 (1992).

    Article  Google Scholar 

  46. R.H. Al Orainy and A.A. Hendi, Microelectron. Eng. 127, 14 (2014).

    Article  Google Scholar 

  47. F. Yakuphanoglu, M. Caglar, Y. Caglar, and S. Ilican, J. Alloys Compd. 506, 188 (2010).

    Article  Google Scholar 

  48. M.A. Olgar, Y. Atasoy, E. Bacaksız, and Ş. Aydoğan, Sens. Actuators A Phys. 261, 56 (2017).

    Article  Google Scholar 

  49. M. Yilmaz, Ceram. Int. 45, 665 (2019).

    Article  Google Scholar 

  50. F. Karatas, Ş. Al-Ghamdi, A.A. Al-Hazmi, F. Al-Hartomy, O.A. El-Tantawy, and F. Yakuphanoglu, Optoelectron. Adv. Mater. Commun. 6, 965 (2012).

    Google Scholar 

  51. M. Ravikumar, R. Chandramohan, K.D. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, S. Alfaify, and A. Kathalingam, Bull. Mater. Sci. 42, 8 (2019).

    Article  Google Scholar 

  52. M. Ravikumar, V. Ganesh, M. Shkir, R. Chandramohan, K.D. Arun Kumar, S. Valanarasu, A. Kathalingam, and S. AlFaify, J. Mol. Struct. 1160, 311 (2018).

    Article  Google Scholar 

  53. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, and S. AlFaify, J. Sol-Gel Sci. Technol. 85, 31 (2018).

    Article  Google Scholar 

  54. M. Ravikumar, S. Valanarasu, R. Chandramohan, S.S.K. Jacob, and A. Kathalingam, J. Electron. Mater. 44, 2800 (2015).

    Article  Google Scholar 

  55. M. Ravikumar, R. Chandramohan, S. Valanarasu, R. Manogowri, and A. Kathalingam, Inorg. Nano Met. Chem. 47, 1495 (2017).

    Article  Google Scholar 

  56. M. Benhaliliba, J. Fundam. Appl. Sci. 9, 605 (2017).

    Article  Google Scholar 

  57. M. Yıldırım and A. Kocyigit, J. Alloys Compd. 768, 1064 (2018).

    Article  Google Scholar 

  58. M.L. Grilli, S. Aydogan, and M. Yilmaz, Superlattices Microstruct. 100, 924 (2016).

    Article  Google Scholar 

  59. M. Yilmaz, B.B. Cirak, S. Aydogan, M.L. Grilli, and M. Biber, Superlattices Microstruct. 113, 310 (2018).

    Article  Google Scholar 

  60. Ş. Karataş, N. Yildirim, and A. Türüt, Superlattices Microstruct. 64, 483 (2013).

    Article  Google Scholar 

  61. M.O. Erdal, A. Kocyigit, and M. Yıldırım, Chin. J. Phys. 64, 163 (2020).

    Article  Google Scholar 

  62. A. Kocyigit, M. Yılmaz, Ş. Aydoğan, and Ü. İncekara, J. Alloys Compd. 790, 388 (2019).

    Article  Google Scholar 

  63. H.C. Card and E.H. Rhoderick, J. Phys. D Appl. Phys. 4, 319 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Aydogan or M. Yilmaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article was corrected to remove extraneous units of eV for ideality factor introduced during the production process.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turgut, G., Aydogan, S., Yilmaz, M. et al. An Investigation of Spray Deposited CdO Films and CdO/p-Si Heterojunction at Different Substrate Temperatures. JOM 73, 566–573 (2021). https://doi.org/10.1007/s11837-020-04514-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04514-9

Navigation