Skip to main content
Log in

Investigation of Solid-State Carbothermal Reduction of Fayalite with and Without Added Metallic Iron

  • Thermodynamic Optimization of Critical Metals Processing and Recovery
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Copper slag (CS) with Fe-bearing fayalite and magnetite is the main waste generated during the pyrometallurgical processing of metallic copper. In this paper, the solid-state reduction kinetics of fayalite with and without addition of 10 wt.% metallic iron were studied using the isothermal method. The phase transformation of fayalite was verified by x-ray diffraction, scanning electron microscopy, and energy dispersive spectrometer. Results show that the carbothermal reduction of fayalite is controlled by phase boundary reaction (tridimensional shape), and the activation energy decreases from 165.22 kJ mol−1 to 145.74 kJ mol−1 after adding 10 wt.% metallic iron. During the carbothermal reduction process, fayalite decomposes into metallic iron and quartz solid solution, followed by the conversion of quartz solid solution into cristobalite solid solution with increasing temperature. The addition of metallic iron creates a nucleating effect and accelerates the decomposition of fayalite. This work contributes to efforts to optimize the carbothermal reduction of CS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.E. Schlesinger, M.J. King, K.C. Sole, and W.G. Davenport, Extractive metallurgy of copper (Elsevier, 2011).

  2. Y. Feng, Q.X. Yang, Q.S. Chen, J. Kero, A. Andersson, H. Ahmed, F. Engström, and C. Samuelsson, J. Cleaner Prod. 1112 (2019).

  3. K. Holland, R.H. Eric, P. Taskinen, and A. Jokilaakso, Miner. Eng. 133, 35 (2019).

    Article  Google Scholar 

  4. I. Alp, H. Deveci, and H. Sungun, J. Hazard. Mater. 159, 390 (2008).

    Article  Google Scholar 

  5. B. Gorai, R.K. Jana, and Premchand, Resour. Conserv. Recycl. 39, 299 (2003).

    Article  Google Scholar 

  6. T.J. Chun, G. Mu, Z. Di, H.M. Long, C. Ning, and D. Li, Arch. Metall. Mater. 63, 299 (2018).

    Google Scholar 

  7. Z.Q. Guo, D.Q. Zhu, J. Pan, and F. Zhang, JOM 68, 2341 (2016).

    Article  Google Scholar 

  8. X.S. Lai and H.J. Huang, Metal Mine 11, 205 (2017).

    Google Scholar 

  9. K.X. Jiao, J.L. Zhang, Z.J. Liu, C.L. Chen, and F.H. Liu, Ironmaking Steelmaking 44, 344 (2017).

    Article  Google Scholar 

  10. H.S. Altundogan, M. Boyrazli, and F. Tumen, Miner. Eng. 17, 465 (2004).

    Article  Google Scholar 

  11. A.N. Banza, E. Gock, and K. Kongolo, Hydrometallurgy 67, 63 (2002).

    Article  Google Scholar 

  12. S. Gyurov, N. Marinkov, Y. Kostova, D. Rabadjieva, D. Kovacheva, C. Tzvetkova, G. Gentscheva, and I. Penkov, Int. J. Miner. Process. 158, 1 (2017).

    Article  Google Scholar 

  13. I. Gaballah, S. El Raghy, and C. Gleitzer, J. Mater. Sci. 13, 1971 (1978).

    Article  Google Scholar 

  14. Z.Q. Guo, D.Q. Zhu, J. Pan, W.J. Yao, W.Q. Xu, and J.N. Chen, JOM 69, 1688 (2017).

    Article  Google Scholar 

  15. J.H. Heo, B.S. Kim, and J.H. Park, Metall. Mater. Trans. B 6, 1352 (2013).

    Article  Google Scholar 

  16. S.W. Li, J. Pan, D.Q. Zhu, Z.Q. Guo, J.W. Xu, and J.L. Chou, Powder Technol. 347, 159 (2019).

    Article  Google Scholar 

  17. Z.Q. Guo, J. Pan, D.Q. Zhu, and F. Zhang, JOM 70, 150 (2018).

    Article  Google Scholar 

  18. I. Barin, Thermochemical Data of Pure Substances (Weinheim: VCH Verlagsgesellschaft mbH, 1995).

    Book  Google Scholar 

  19. A. Warczok and T.A. Utigard, Can. Metal. Q. 37, 27 (1998).

    Article  Google Scholar 

  20. H. Zhang, G. Wang, S.H. Zhang, J.S. Wang, and Q.G. Xue, Nonferrous Metals Sci. Eng. 10, 28 (2019).

    Google Scholar 

  21. L. Zhang, Y. Zhu, W.Z. Yin, B. Guo, F. Rao, and J.G. Ku, ACS Omega 5, 8605 (2020).

    Article  Google Scholar 

  22. L. Zhang, H.H. Chen, R.D. Deng, W.R. Zuo, B. Guo, and J.G. Ku, Powder Technol. 367, 157 (2020).

    Article  Google Scholar 

  23. D. Daval, D. Testemale, N. Recham, J.M. Tarascon, J. Siebert, I. Martinez, and F. Guyot, Chem. Geol. 275, 161 (2010).

    Article  Google Scholar 

  24. A. Khawam and D.R. Flanagan, J. Phys. Chem. B 110, 17315 (2006).

    Article  Google Scholar 

  25. M.J. Starink, Thermochim. Acta 404, 163 (2003).

    Article  Google Scholar 

  26. S. Nasr and K.P. Plucknett, Energy Fuels 28, 1387 (2014).

    Article  Google Scholar 

  27. P.E. Sánchez-Jiménez, A. Perejón, J.M. Criado, M.J. Diánez, and L.A. Pérez-Maqueda, Polymer 51, 3998 (2010).

    Article  Google Scholar 

  28. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. G.H. Qi, Liu, Z.H. Peng, and Y.L. Wang, Trans. Nonferrous Met. Soc. China 29, 416 (2019).

  29. X.B. Li, H.Y. Wang, Q.S. Zhou, T.G. Qi, G.H. Liu, and Z.H. Peng, Waste Manage. 87, 798 (2019).

    Article  Google Scholar 

  30. A.C.D. Chaklader and A.L. Roberts, J. Am. Ceram. Soc. 44, 35 (1961).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the China Postdoctoral Science Foundation (2019M662733), National Natural Science Foundation of China (51874219) and National Key Research and Development Program of China (2018YFC1901502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyang Wang.

Ethics declarations

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 443 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Shen, L., Bao, H. et al. Investigation of Solid-State Carbothermal Reduction of Fayalite with and Without Added Metallic Iron. JOM 73, 703–711 (2021). https://doi.org/10.1007/s11837-020-04515-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04515-8

Navigation