Skip to main content
Log in

Satellites of infinite rank in the smooth concordance group

  • Published:
Inventiones mathematicae Aims and scope

Abstract

We conjecture that satellite operations are either constant or have infinite rank in the concordance group. We reduce this to the difficult case of winding number zero satellites, and use SO(3) gauge theory to provide a general criterion sufficient for the image of a satellite operation to generate an infinite rank subgroup of the smooth concordance group \({\mathcal {C}}\). Our criterion applies widely; notably to many unknotted patterns for which the corresponding operators on the topological concordance group are zero. We raise some questions and conjectures regarding satellite operators and their interaction with concordance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Akbulut, S., Kirby, R.: Branched covers of surfaces in 4-manifolds. Math. Ann. 252(2), 111–131 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cochran, T.D., Davis, C.W., Ray, A.: Injectivity of satellite operators in knot concordance. J. Topol. 7(4), 948–964 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cochran, T.D., Gompf, R.: Applications of Donaldson’s theorems to classical knot concordance, homology 3-spheres and Property P. Topology 27(4), 495–512 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, W.: Some inequalities for Heegaard Floer concordance invariants of satellite knots. Thesis (Ph.D.)–Michigan State University, ProQuest LLC, Ann Arbor (2019)

  5. Cochran, T.D., Harvey, S., Horn, P.: Filtering smooth concordance classes of topologically slice knots. Geom. Topol. 17(4), 2103–2162 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cochran, T.D., Harvey, S., Leidy, C.: 2-torsion in the \(n\)-solvable filtration of the knot concordance group. Proc. Lond. Math. Soc. (3) 102(2), 257–290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cochran, T.D., Harvey, S., Leidy, C.: Primary decomposition and the fractal nature of knot concordance. Math. Ann. 351(2), 443–508 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cochran, T.D., Harvey, S., Powell, M.: Grope metrics on the knot concordance set. J. Topol. 10(3), 669–699 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Choon Cha, J., Ko, K.H.: Signatures of links in rational homology spheres. Topology 41(6), 1161–1182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cochran, T.D., Orr, K.E.: Not all links are concordant to boundary links. Ann. Math. (2) 138(3), 519–554 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cochran, T.D., Orr, K.E., Teichner, P.: Knot concordance, Whitney towers and \(L^2\)-signatures. Ann. Math. (2) 157(2), 433–519 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cochran, T.D., Teichner, P.: Knot concordance and von Neumann \(\rho \)-invariants. Duke Math. J. 137(2), 337–379 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Donaldson, S.K.: Floer Homology Groups in Yang–Mills Theory, Volume 147 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2002). With the assistance of M. Furuta and D. Kotschick

  14. Davis, C.W., Ray, A.: Satellite operators as group actions on knot concordance. Algebr. Geom. Topol. 16(2), 945–969 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. Floer, A.: An instanton-invariant for 3-manifolds. Commun. Math. Phys. 118(2), 215–240 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Freedman, M.H., Quinn, F.: Topology of 4-Manifolds, vol. 39. Princeton University Press, Princeton (1990)

    MATH  Google Scholar 

  17. Fintushel, R., Stern, R.J.: Pseudofree orbifolds. Ann. Math. 122(2), 335–364 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fintushel, R., Stern, R.J.: Instanton homology of Seifert fibred homology three spheres. Proc. Lond. Math. Soc. 3(1), 109–137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  19. Furuta, M.: Homology cobordism group of homology 3-spheres. Invent. Math. 100(1), 339–355 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gordon, C.M.A.: Some aspects of classical knot theory. In: Knot Theory (Proc. Sem., Plans-sur-Bex, 1977), Volume 685 of Lecture Notes in Math., pp. 1–60. Springer, Berlin (1978)

  21. Gordon, C.M.A.: Dehn surgery and satellite knots. Trans. Am. Math. Soc. 275(2), 687–708 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gordon, C.: Dehn surgery and 3-manifolds. In: Low Dimensional Topology, Volume 15 of IAS/Park City Math. Ser., pp. 21–71. Amer. Math. Soc., Providence (2009)

  23. Grigsby, J.E., Ruberman, D., Strle, S.: Knot concordance and Heegaard Floer homology invariants in branched covers. Geom. Topol. 12(4), 2249–2275 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hedden, M., Kirk, P.: Chern–Simons invariants, \({\rm SO}(3)\) instantons, and \({\mathbb{Z}}/2\) homology cobordism. In: Chern-Simons Gauge Theory: 20 Years After, vol. 50 of AMS/IP Stud. Adv. Math., pp. 83–114. Amer. Math. Soc., Providence (2011)

  25. Hedden, M., Kirk, P.: Instantons, concordance, and Whitehead doubling. J. Differ. Geom. 91(2), 281–319 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Hedden, M., Kim, S.-G., Livingston, C.: Topologically slice knots of smooth concordance order two. J. Differ. Geom. 102(3), 353–393 (2016)

    MathSciNet  MATH  Google Scholar 

  27. Hedden, M., Livingston, C., Ruberman, D.: Topologically slice knots with nontrivial Alexander polynomial. Adv. Math. 231(2), 913–939 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hom, J.: An infinite-rank summand of topologically slice knots. Geom. Topol. 19(2), 1063–1110 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. Hom, J.: A survey on Heegaard Floer homology and concordance. J. Knot Theory Ramifications 26(2), 1740015 (2017). 24

    Article  MathSciNet  MATH  Google Scholar 

  30. Jabuka, S.: Concordance invariants from higher order covers. Topol. Appl. 159(10–11), 2694–2710 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Levine, A.S.: Nonsurjective satellite operators and piecewise-linear concordance. Forum Math. Sigma 4, e34 (2016). 47

    Article  MathSciNet  MATH  Google Scholar 

  32. Litherland, R.A.: Signatures of iterated torus knots. In: Topology of Low-dimensional Manifolds, pp. 71–84. Springer, Berlin (1979)

  33. Litherland, R.A.: Cobordism of satellite knots. In: Four-manifold Theory (Durham, N.H., 1982), Volume 35 of Contemp. Math., pp. 327–362. Amer. Math. Soc., Providence (1984)

  34. Livingston, C.: Knots which are not concordant to their reverses. Quart. J. Math. Oxford Ser. (2) 34(135), 323–328 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  35. Livingston, C.: Links not concordant to boundary links. Proc. Am. Math. Soc. 110(4), 1129–1131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Livingston, C.: Infinite order amphicheiral knots. Algebr. Geom. Topol. 1, 231–241 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Livingston, C.: The concordance genus of knots. Algebr. Geom. Topol. 4, 1–22 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  38. Livingston, C.: Notes on the knot concordance invariant upsilon. Algebr. Geom. Topol. 17(1), 111–130 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewark, L., Lobb, A.: New quantum obstructions to sliceness. Proc. Lond. Math. Soc. (3) 112(1), 81–114 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Livingston, C., Melvin, P.: Abelian invariants of satellite knots. In: Geometry and Topology (College Park, Md., 1983/84), Volume 1167 of Lecture Notes in Math., pp. 217–227. Springer, Berlin (1985)

  41. Lobb, A.: A slice genus lower bound from \({\rm sl}(n)\) Khovanov-Rozansky homology. Adv. Math. 222(4), 1220–1276 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Morgan, J.W., Mrowka, T., Ruberman, D.: The \(L^2\)-moduli space and a vanishing theorem for Donaldson polynomial invariants. In: Monographs in Geometry and Topology, II. International Press, Cambridge (1994)

  43. Manolescu, C., Owens, B.: A concordance invariant from the Floer homology of double branched covers. Int. Math. Res. Not. IMRN 2007(20), 21 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Neumann, W.D., Zagier, D.: A note on an invariant of Fintushel and Stern. In: Geometry and Topology (College Park, Md., 1983/84), Volume 1167 of Lecture Notes in Math., pp. 241–244. Springer, Berlin (1985)

  45. Ozsváth, P.S., Stipsicz, A.I., Szabó, Z.: Concordance homomorphisms from knot Floer homology. Adv. Math. 315, 366–426 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  46. Park, K.: On independence of iterated Whitehead doubles in the knot concordance group. J. Knot Theory Ramificat. 27(01), 1850003 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  47. Pinzón-Caicedo, J.: Independence of satellites of torus knots in the smooth concordance group. Geom. Topol. 21(6), 3191–3211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  48. Rasmussen, J.: Khovanov homology and the slice genus. Invent. Math. 182(2), 419–447 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Rolfsen, D.: Knots and Links, Volume 7 of Mathematics Lecture Series. Publish or Perish, Inc., Houston (1990). Corrected reprint of the 1976 original

  50. Seifert, H.: On the homology invariants of knots. Quart. J. Math. Oxf. Ser. (2) 1, 23–32 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  51. Seifert, H., Threlfall, W.: Seifert and Threlfall: a textbook of topology. Pure and Applied Mathematics, vol. 89. Academic Press Inc., New York (1980)

  52. Taubes, C.H.: Gauge theory on asymptotically periodic 4-manifolds. J. Differ. Geom. 25(3), 363–430 (1987)

    MathSciNet  MATH  Google Scholar 

  53. Taubes, C.H.: \(L^2\) moduli spaces on 4-manifolds with cylindrical ends. In: Monographs in Geometry and Topology, I. International Press, Cambridge (1993)

  54. Uhlenbeck, K.K.: Connections with \(L^{p}\) bounds on curvature. Commun. Math. Phys. 83(1), 31–42 (1982)

    Article  MATH  Google Scholar 

  55. Wang, S.: The genus filtration in the smooth concordance group. Pac. J. Math. 285(2), 501–510 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors owe a debt of gratitude to Paul Kirk, with whom the first author learned and explored the ideas and questions central to the paper, and whose mentorship and guidance showed the second author the way forward from her time as a graduate student. The second author is eternally grateful to Tye Lidman for many very fruitful conversations, and to him, Allison Miller, and Chuck Livingston for many helpful comments on an early draft. Matthew Hedden was partially supported by NSF CAREER Grant DMS-1150872, NSF Grant DMS-1709016 and an Alfred P. Sloan Research Fellowship. Juanita Pinzón-Caicedo was partially supported by NSF Grant DMS-1664567, she is also grateful to the Max Planck Institute for Mathematics in Bonn for its hospitality and financial support while a portion of this work was prepared for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Hedden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hedden, M., Pinzón-Caicedo, J. Satellites of infinite rank in the smooth concordance group. Invent. math. 225, 131–157 (2021). https://doi.org/10.1007/s00222-020-01026-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00222-020-01026-w

Navigation