Skip to main content
Log in

Entropy generation to predict irreversibilities in poroelastic film with multiple forces: spectral study

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The present investigation is useful in medical engineering treatments, in which biothermal therapy is one of the popular treatments. The investigation of transport phenomena of fluid flow and heat in those applications requires multi-physical models featuring heat transfer and deformable porous media. In view of this, it is anticipated to study the influence of thermal buoyancy force and nonlinear radiation on the irreversibility, flow field, solid deformation, and heat transfer characteristics in viscous radiated fluid flow in a vertical deformable porous film. The combined phenomenon of the flow field movement and solid deformation in the porous medium is considered. The flow governing equations are non-dimensionalized and solved numerically by employing Chebyshev spectral method. The impact of important parameters on the fluid velocity, solid displacement, and fluid temperature profiles is depicted graphically and interpreted at length. In the deformable porous layer, it is perceived that the fluid velocity, solid displacement, and fluid temperature profiles decrease with an increase in suction/injection parameter values. The present physical model finds applications in geomechanics (Coussy in Mechanics of porous continua, Wiley, New York, 1995; Biot in J Appl Phys 12(2):155–164, 1941) and biomedical engineering (Mow et al. in J Biomech 17(5):377–394, 1984; Barry et al. in J Appl Math Phys 42:633–648, 1991; Lai et al. in J Biomech Eng 131:245-258, 1991).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

Be:

Bejan number

Br:

Brinkman number

E G :

Entropy generation (W m−3 K−1)

E G,C :

Characteristic entropy generation

Fr:

Froud number

\(g,g_{x} ,g_{y}\) :

Gravitational acceleration (m2 s−1)

Gr:

Grashof number

h :

Channel height (m)

k :

Porous drag coefficient

\(k^{*}\) :

Mean absorption coefficient

k 0 :

Thermal conductivity (W m−1 K−1)

m :

Temperature parameter

Nr:

Radiation parameter

Ns:

Non-dimensional entropy generation

Nu1, Nu2 :

Nusselt numbers

\(\frac{\partial p}{\partial x},\frac{\partial p}{\partial y}\) :

Axial and transverse pressure gradients (Pa m−1)

q r :

Radiative heat flux (W m−2)

T 0 :

Reference temperature (K)

Re:

Reynolds number

T :

Temperature (K)

T 1 :

Temperature of left wall (K)

T w :

Temperature of right wall (K)

u :

Solid displacement (m)

v :

Fluid velocity (m s−1)

V :

Suction/injection velocity (m s−1)

U 0 :

Characteristic velocity (m s−1)

X, Y :

Space coordinates (m)

x, y :

Non-dimensional space coordinate

\(\beta\) :

Thermal expansion coefficient

\(\delta\) :

Viscous drag parameter

\(\phi\) :

Porous medium volume fraction

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\mu_{a}\) :

Lame constant

\(\rho\) :

Fluid density (kg m−3)

\(\sigma^{*}\) :

Stefan–Boltzmann constant (kg s−3 K−4)

\(\theta_{w}\) :

Temperature ratio parameter

\(\theta\) :

Non-dimensional temperature

\(\tau_{0} ,\tau_{1}\) :

Shear stress (kg m−1 s−2)

References

  1. O Coussy Mechanics of Porous Continua Wiley, New York (1995)

  2. M A Biot J. Appl. Phys. 12(2) 155–164 (1941)

  3. V C Mow, M H Holmest and W M Lai J. Biomech. 17(5) 377–394 (1984)

  4. S I Barry, K H Parker and GKAldis J. Appl. Math. Phy. 42 633–648 (1991)

  5. W M Lai, J S Hou and V C Mow J. Biomech. Eng. 131 245–258 (1991)

  6. D Ambrosi J Appl. Math. Mech. 82(2) 115–124 (2002)

  7. G Klubertanz, F Bouchelaghem, L Laloui and L Vulliet Math. Comput. Model. 37(5) 571–582 (2003)

  8. D A Nield, A V Kuznetsov and M Xiong Transp. Porous Media 56 351–367 (2004)

  9. I Khan A Thesis, Georgia Institute of Technology, Atlanta (2010)

  10. S Sreenadh, M M Rashidi, S N Kumara and A Parandhama J. Appl. Fluid Mech. 9(5) 2391–2401 (2015)

  11. S Sreenadh, K V Prasad, H Vaidya, E Sudhakara, G Gopi Krishna and M Krishnamurthy Int. J. Appl. Comput. Math. 3(3) 2125–2138 (2017)

    Article  MathSciNet  Google Scholar 

  12. A Ahmed and J I Siddique Math. Biosci. Eng. 16(1) 1–17 (2019)

  13. G Gopi Krishna, S Jangili, S R Mishra and S Sreenadh Indian J. Phys. 93(11) 1465–1476(2019)

  14. A Bejan J. Heat Transf. 101(4) 718–725 (1979)

  15. G Nagaraju, J Srinivas, J V R Murthy, O A Beg and A Kadir J. Heat Transf. 141(1) 012004-1-9 (2018)

  16. J Srinivas and O A Beg Heat Transf. Res. 49(6) 529–553 (2018)

  17. F Selimefendigil and H F Öztop J. Taiwan Inst. Chem. Engineers 56 42–56 (2015)

  18. A J Chamkha and F Selimefendigil Numer. Heat Trans., Part A: Appl. An Int. J. Comput. Method 69(6) 659–675 (2015)

  19. S O Adesanya and M B Fakoya Entropy 19(9) 498 (2017)

  20. G J Reddy, M Kumar and O A Beg Phy. A: Stat. Mech. App. 510(15) 426–445 (2018)

  21. A J Chamkha and F Selimefendigil Entropy 20(11) 846 (2018)

  22. G J Reddy, M Kumar, J C Umavathi and M A Sheremet Canadian J. Phy. 96(9) 978–991 (2018)

  23. S O Adesanya, A C Egere and R S Lebelo Physica A528 121260 (2019)

  24. F Selimefendigil and H F Öztop Int. J. Mech. Sci. 152 185–197 (2019)

  25. F Selimefendigil and H F Öztop Int. J. Heat Mass Trans. 113 104551 (2020)

    Article  Google Scholar 

  26. G Gopi Krishna, S Sreenadh and ANS Srinivas World Appl. Sci. J. 35(7) 1059–1067 (2017)

  27. G Gopi Krishna, S Sreenadh and ANS Srinivas Differ. Equ. Dyn. Syst. 1–24 (2018)

  28. S Sreenadh, G Gopi Krishna, ANSSrinivas and ESudhakara J. Porous Media 21 523–538 (2018)

  29. M Krishna Murthy Indian J Phys. 94, 2023–2032 (2020)

    Article  ADS  Google Scholar 

  30. D. Srinivasacharya, B. Mallikarjuna and R. Bhuvanavijaya, Ain Shams Eng. J. 6 553–564 (2015)

    Article  Google Scholar 

  31. B Mallikarjuna, A M Rashad, A J Chamkha and S Hariprasad Raju Afrika Matematika 27(3) 646–665 (2016)

    Google Scholar 

  32. B Mallikarjuna, A M Rashad, A K Hussein and S Hariprasad Raju Arabian J. Sci. Eng. 41 4691–4700 (2016)

    Article  MathSciNet  Google Scholar 

  33. V Nagendramma, C S K Raju, B Mallikarjuna, S A Shehzad and A Leelaratnam Applied Math. Mech. 39(5) 623–638 (2018)

  34. R Bhuvanavijaya, V R Prasad, B Mallikarjuna and O A Beg Comput. Therm. Sci. 6(5) 451–460 (2014)

  35. P B AReddy, B Mallikarjuna and M K Reddy Frontiers Heat Mass Transf. 11(5) 1–10 (2018)

  36. B C Shekar, A Ramesh and N Kishan J. Nanofluids 6(1) 59–70 (2017)

  37. C S Reddy, N Kishan and M Madhu Int. J. Appl. Comput. Math. 4(8) 1–13 (2018)

  38. J Srinivas, J V Ramana Murthy and A J Chamkha Int. J. Numer. Methods Heat Fluid Flow 26(3/4) 1027–1049 (2015)

    Article  Google Scholar 

  39. O A Beg, M Hameed and T A Beg Int. J. Comp. Meth. Eng. Sci. Mech. 14(2) 104–115 (2013)

  40. M Norouzi, M Davoodi, O A Beg and A A Joneidi Int. J. Therm. Sci. 69 61–69 (2013)

    Article  Google Scholar 

  41. Md M Hoque, Md M Alam, M Ferdows and O A Beg Proc. IMECHE, H, J. Eng. Med. 227(11) 1155–1170 (2013)

  42. R Bellman and R Kalaba Amer. Elseiver, New York (1965)

    Google Scholar 

  43. L N Trefethen SIAM 10 (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas Jangili.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jangili, S., Mallikarjuna, B. & Gopi Krishna, G. Entropy generation to predict irreversibilities in poroelastic film with multiple forces: spectral study. Indian J Phys 95, 2719–2732 (2021). https://doi.org/10.1007/s12648-020-01922-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01922-0

Keywords

Navigation