Skip to main content
Log in

A critical review on measures to suppress flow boiling instabilities in microchannels

  • Review
  • Published:
Heat and Mass Transfer Aims and scope Submit manuscript

Abstract

Due to the development of the electronic components, concentrator photovoltaic, fuel cell, etc., the cooling requirement of the devices increases rapidly. Due to the higher heat transfer and compact design of the microchannel technology, it has been widely considered and investigated to solve the increasing heat flux. Boiling heat transfer is an effective way to dissipate a mass of heat using the latent heat of phase change. Hence, comparing with the single phase liquid flow, flow boiling in microchannel utilizes both advantages of micro scale effect and phase change effect, and can realize a much higher heat flux. Therefore, it becomes a critical way for super high heat dissipation. However, the procedure of the phase change and two phase flow may lead to instability, which can seriously inhibit the heat transfer performance of coolant in microchannel. To tackle with the flow boiling instability, a number of methods were proposed and reported. Therefore, in this paper, to effectively improve the flow boiling in microchannel heat exchanger, the cutting-edge control technologies in this field were reviewed, categorized and summarized, and the future trend of the research was presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CHF:

Critical heat flux

CNT:

Carbon nanotubes

CPV:

Concentrator photovoltaic

DWO:

Density wave oscillations

HCPV:

High concentrator photovoltaics

HTC:

Heat transfer coefficient

MFB:

Minimum film boiling

OFO:

Onset of flow oscillation

ONB:

Onset of nucleate boiling

OSV:

Onset of significant void

PCI:

Parallel-channel Instability

PDO:

Pressure drop oscillation

ThO:

Thermal oscillation

References

  1. Moore GE (1965) Cramming more components onto integrated circuits. Electron 38:114

    Google Scholar 

  2. Sohel Murshed SM, de Castro CA (2017) A critical review of traditional and emerging techniques and fluids for electronics cooling. Renew Sust Energ Rev 78:821–833

    Article  Google Scholar 

  3. Di Capua HM, Escobar R, Diaz AJ, Guzmán AM (2018) Enhancement of the cooling capability of a high concentration photovoltaic system using microchannels with forward triangular ribs on sidewalls. Appl Energy 226:160–180

    Article  Google Scholar 

  4. Paredes S, Burg BR, Ruch P et al (2015) Receiver-module-integrated thermal management of high-concentration photovoltaic thermal systems. In: 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, 2015, pp 1–6

  5. Hedayatizadeh M, Ajabshirchi Y, Sarhaddi F, Safavinejad A, Farahat S, Chaji H (2013) Thermal and electrical assessment of an integrated solar photovoltaic thermal (PV/T) water collector equipped with a compound parabolic concentrator (CPC). Int J Green Energy 10:494–522

    Article  Google Scholar 

  6. Mudawar I (2011) Two phase microchannel heat sinks: theory, applications and limitations. J Electron Packag 133:1–31

    Article  Google Scholar 

  7. Jakhar S, Soni MS, Gakkhar N (2016) Historical and recent development of concentrating photovoltaic cooling technologies. Renew Sust Energ Rev 60:41–59

    Article  Google Scholar 

  8. Micheli L, Sarmah N, Luo X, Reddy KS, Mallick TK (2013) Opportunities and challenges in micro- and nano-technologies for concentrating photovoltaic cooling: a review. Renew Sust Energ Rev 20:595–610

    Article  Google Scholar 

  9. Han Y, Lau BL, Tang G, Zhang X, Rhee DMW (2017) Si-based hybrid microcooler with multiple drainage microtrenches for high heat flux cooling. IEEE Trans Compon Packag Manuf Technol 7:50–57

    Article  Google Scholar 

  10. Lee HJ, Liu DY, Yao S (2010) Flow instability of evaporative micro-channels. Int J Heat Mass Transf 53:1740–1749

    Article  MATH  Google Scholar 

  11. Lv Y, Xia G, Cheng L, Ma D (2019) Experimental study on the pressure drop oscillation characteristics of the flow boiling instability with FC-72 in parallel rectangle microchannels. Int Commun Heat Mass 108:104289

    Article  Google Scholar 

  12. Kingston TA, Weibel JA, Garimella SV (2018) High-frequency thermal-fluidic characterization of dynamic microchannel flow boiling instabilities: part 1 – rapid-bubble-growth instability at the onset of boiling. Int J Multiphase Flow 106:179–188

    Article  MathSciNet  Google Scholar 

  13. Kingston TA, Weibel JA, Garimella SV (2019) Ledinegg instability-induced temperature excursion between thermally isolated, heated parallel microchannels. Int J Heat Mass Transf 132:550–556

    Article  Google Scholar 

  14. Kuang Y, Wang W, Miao J, Yu X, Zhuan R (2017) Theoretical analysis and modeling of flow instability in a mini-channel evaporator. Int J Heat Mass Transf 104:149–162

    Article  Google Scholar 

  15. Kuo CJ, Peles Y (2009) Pressure effects on flow boiling instabilities in parallel microchannels. Int J Heat Mass Transf 52:271–280

    Article  Google Scholar 

  16. Wang G, Cheng P (2008) An experimental study of flow boiling instability in a single microchannel, Int. Commun Heat Mass Transfer 35:1229–1234

    Article  Google Scholar 

  17. Li Y, Xia G, Jia Y, Cheng Y, Wang J (2017) Experimental investigation of flow boiling performance in microchannels with and without triangular cavities – a comparative study. Int J Heat Mass Transf 108:1511–1526

    Article  Google Scholar 

  18. Li H, Hrnjak PS (2017) Effect of channel geometry on flow reversal in microchannel evaporators. Int J Heat Mass Tran 115:1–10

    Article  Google Scholar 

  19. Huang H, Pan L, Yan R (2018) Flow characteristics and instability analysis of pressure drop in parallel multiple microchannels. Appl Therm Eng 142:184–193

    Article  Google Scholar 

  20. Szczukiewicz S, Borhani N, Thome JR (2013) Two-phase heat transfer and high-speed visualization of refrigerant flows in 100 × 100 μm2 silicon multi-microchannels. Int J Refrig 36:402–413

    Article  Google Scholar 

  21. Deng D, Chen L, Chen X, Pi G (2019) Heat transfer and pressure drop of a periodic expanded-constrained microchannels heat sink. Int J Heat Mass Transf 140:678–690

    Article  Google Scholar 

  22. Xia GD, Tang YX, Zong LX, Ma DD, Jia YT, Rong RZ (2019) Experimental investigation of flow boiling characteristics in microchannels with the sinusoidal wavy sidewall. Int Commun Heat Mass 101:89–102

    Article  Google Scholar 

  23. Zhang SW, Tang Y, Yuan W, Zeng J, Xie YX (2016) A comparative study of flow boiling performance in the interconnected microchannel net and rectangular microchannels. Int J Heat Mass Transf 98:814–823

    Article  Google Scholar 

  24. Alam T, Li W, Chang W, Yang F, Khan J, Li C (2018) A comparative study of flow boiling HFE-7100 in silicon nanowire and plainwall microchannels. Int J Heat Mass Transf 124:829–840

    Article  Google Scholar 

  25. Jia Y, Xia G, Zong L, Ma D, Tang Y (2018) A comparative study of experimental flow boiling heat transfer and pressure drop characteristics in porous-wall microchannel heat sink. Int J Heat Mass Transf 127:818–833

    Article  Google Scholar 

  26. Sharma D, Ghosh DP, Saha SK, Raj R (2019) Thermohydraulic characterization of flow boiling in a nanostructured microchannel heat sink with vapor venting manifold. Int J Heat Mass Transf 130:1249–1259

    Article  Google Scholar 

  27. Azizi Z, Alamdari A, Malayeri MR (2016) Thermal performance and friction factor of a cylindrical microchannel heat sink cooled by cu-water nanofluid. Appl Therm Eng 99:970–978

    Article  Google Scholar 

  28. Ghiaasiaan SM (2017) Transition and film boiling. Springer, Handbook of Thermal Science and Engineering

    Book  MATH  Google Scholar 

  29. Mercado M, Wong N, Hartwig J (2019) Assessment of two-phase heat transfer coefficient and critical heat flux correlations for cryogenic flow boiling in pipe heating experiments. Int J Heat Mass Transf 133:295–315

    Article  Google Scholar 

  30. Vlachou M, Lioumbas J, Karapantsios T (2015) Heat transfer enhancement in boiling over modified surfaces: a critical review. Interfac Phenom Heat Transfer 3:341–367

    Article  Google Scholar 

  31. Nukiyama S (1984) The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure. Int J Heat Mass Transf 27:959–970

    Article  Google Scholar 

  32. Li W, Chen Z, Li J, Sheng K, Zhu J (2019) Subcooled flow boiling on hydrophilic and super-hydrophilic surfaces in microchannel under different orientations. Int J Heat Mass Transf 129:635–649

    Article  Google Scholar 

  33. Wang G, Cheng P (2009) Subcooled flow boiling and microbubble emission boiling phenomena in a partially heated microchannel. Int J Heat Mass Transf 52:79–91

    Article  Google Scholar 

  34. Triplett KA, Ghiaasiaan SM, Abdel-Khalik SI (1999) Gas–liquid two-phase flow in microchannels part I: two-phase flow patterns. Int J Multiphase Flow 25:377–394

    Article  MATH  Google Scholar 

  35. Serizawa A, Feng Z, Kawara Z (2002) Two-phase flow in microchannels. Exp Thermal Fluid Sci 26(6):703–714

    Article  Google Scholar 

  36. Yin L, Jia L, Guan P, Liu D (2014) Experimental investigation on bubble confinement and elongation in microchannel flow boiling. Exp Thermal Fluid Sci 54:290–296

    Article  Google Scholar 

  37. Yin L, Xu R, Jiang P, Cai H, Jia L (2017) Subcooled flow boiling of water in a large aspect ratio microchannel. Int J Heat Mass Transf 112:1081–1089

    Article  Google Scholar 

  38. Yin L, Jia L (2016) Confined bubble growth and heat transfer characteristics during flow boiling in microchannel. Int J Heat Mass Transf 98:114–123

    Article  Google Scholar 

  39. Al-Zaidi AH, Mahmoud MM, Karayiannis TG (2019) Flow boiling of HFE-7100 in microchannels: experimental study and comparison with correlations. Int J Heat Mass Transf 140:100–128

    Article  Google Scholar 

  40. Kim SM, Mudawar I (2014) Review of databases and predictive methods for heat transfer in condensing and boiling mini/micro-channel flows. Int J Heat Mass Transf 77:627–652

    Article  Google Scholar 

  41. Wang G, Cheng P, Bergles AE (2008) Effects of inlet/outlet configurations on flow boiling instability in parallel microchannels. Int J Heat Mass Transf 51:2267–2281

    Article  Google Scholar 

  42. Sandler S, Zajaczkowski B, Krolicki Z (2018) Review on flow boiling of refrigerants R236fa and R245fa in mini and micro channels. Int J Heat Mass Transf 126:591–617

    Article  Google Scholar 

  43. Costa-Patry E, Thome JR (2013) Flow pattern-based flow boiling heat transfer model for microchannels. Int J Refrig 36:414–420

    Article  Google Scholar 

  44. Thome JR, Dupont V, Jacobi AM (2004) Heat transfer model for evaporation in microchannels. Part I: presentation of the model. Int J Heat Mass Transf 47:3375–3385

    Article  MATH  Google Scholar 

  45. Pan L, Yan R, Huang H, He H, Li P (2018) Experimental study on the flow boiling pressure drop characteristics in parallel multiple microchannels. Int J Heat Mass Transf 116:642–654

    Article  Google Scholar 

  46. Prajapati YK, Bhandari P (2017) Flow boiling instabilities in microchannels and their promising solutions – a review. Exp Thermal Fluid Sci 88:576–593

    Article  Google Scholar 

  47. Bouré JA, Bergles AE, Tong LS (1973) Review of two-phase flow instability. Nucl Eng Des 25:165–192

    Article  Google Scholar 

  48. Yuncu H, Yildirim OT, Kakac S (1991) Two-phase flow instabilities in a horizontal single boiling channel. Appl Sci Res 48:83–104

    Article  MATH  Google Scholar 

  49. Stenning AH, Veziroglu TN (1965) Flow oscillation modes in forced convection boiling. NASA National Aeronautics and Space Administration, Washington, D.C.

    Google Scholar 

  50. Zhang T, Tong T, Chang JY, Peles Y, Prasher R, Jensen MK, Wen JT, Phelan P (2009) Ledinegg instability in microchannels. Int J Heat Mass Transf 52:5661–5674

    Article  MATH  Google Scholar 

  51. Maulbetsch JS, Griffith P (1965) A study of system-induced instabilities in forced convection flows with subcooled boiling, Tech. Report No. 5382–35. Dept. of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  52. Wu H, Cheng P (2004) Boiling instability in parallel silicon microchannels at different heat flux. Int J Heat Mass Transf 47:3631–3641

    Article  Google Scholar 

  53. Saha P, Ishii M, Zuber N (1976) An experimental investigation of the thermally induced flow oscillations in two-phase systems. J Heat Transf 98:616–622

    Article  Google Scholar 

  54. Ünal HC (1982) The period of density-wave oscillations in forced convection steam generator tubes. Int J Heat Mass Transf 25:419–421

    Article  Google Scholar 

  55. Qu W, Mudawar I (2003) Measurement and prediction of pressure drop in two-phase micro-channel heat sinks. Int J Heat Mass Transf 46:2737–2753

    Article  Google Scholar 

  56. Stenning A, Veziroglu T (1965) Flow oscillation modes in forced convection boiling, heat transfer fluid Mech. Stanford Univ Press:301–316

  57. Liu H, Kakac S, Mayinger F (1994) Characteristics of transition boiling and thermal oscillation in an upflow convective boiling system. Exp Thermal Fluid Sci 6:195–205

    Article  Google Scholar 

  58. Ruspini LC, Marcel CP, Clausse A (2014) Two-phase flow instabilities: a review. Int J Heat Mass Transf 71:521–548

    Article  Google Scholar 

  59. Markal B, Aydin O, Avci M (2016) An experimental investigation of saturated flow, boiling heat transfer and pressure drop in square microchannels. Int J Refrig 65:1–11

    Article  Google Scholar 

  60. Raj S, Shukla A, Pathak M, Khan MK (2019) A novel stepped microchannel for performance enhancement in flow boiling. Int J Heat Mass Transf 144:118611

    Article  Google Scholar 

  61. Wang Y, Sefiane K, Harmand S (2012) Flow boiling in high-aspect ratio mini- and micro-channels with FC-72 and ethanol: experimental results and heat transfer correlation assessments. Exp Thermal Fluid Sci 36:93–106

    Article  Google Scholar 

  62. Megahed A (2011) Experimental investigation of flow boiling characteristics in a crosslinked microchannel heat sink. Int J Multiphase Flow 37:380–393

    Article  Google Scholar 

  63. Huh C, Kim J, Kim MH (2007) Flow pattern transition instability during flow boiling in a microchannel. Int J Heat Mass Transf 50:1049–1060

    Article  Google Scholar 

  64. Hetsroni G, Mosyak A, Pogrebnyak E, Segal Z (2006) Periodic boiling in parallel microchannels at low vapor quality. Int J Multiphase Flow 32:1141–1159

    Article  MATH  Google Scholar 

  65. Wu HY, Cheng P (2003) Visualization and measurements of periodic boiling in silicon microchannels. Int J Heat Mass Transf 46:2603–2614

    Article  Google Scholar 

  66. Li WM, Alam T, Yang FH, Qu XP, Peng BL, Khan J, Li C (2017) Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (II): enhanced CHF and reduced pressure drop. Int J Heat Mass Transf 115:264–272

    Article  Google Scholar 

  67. Balasubramanian K, Lee PS, Jin LW, Chou SK, Teo CJ, Gao S (2011) Experimental investigations of flow boiling heat transfer and pressure drop in straight and expanding microchannels -a comparative study. Int J Therm Sci 50:2413–2421

    Article  Google Scholar 

  68. Xia G, Lv Y, Ma D, Jia Y (2009) Experimental investigation of the continuous two-phase instable boiling in microchannels with triangular corrugations and prediction for instable boundaries. Appl Therm Eng 162:114251

    Article  Google Scholar 

  69. Prajapati YK, Pathak M, MK Khan MK. (2017) Bubble dynamics and flow boiling characteristics in three different microchannel configurations. Int J Therm Sci 112:371–382

    Article  Google Scholar 

  70. Song M, Dang C, Hihara E (2020) Experimental investigation on the heat transfer characteristics of novel rectangle radial microchannel heat exchangers in two-phase flow cooling system for data centers. J Therm Anal Calorim 141:199–211

    Article  Google Scholar 

  71. Xu JL, Zhang W, Wang QW, Su QC (2006) Flow instability and transient flow patterns inside intercrossed silicon microchannel array in a micro-timescale. Int J Multiphase Flow 32:568–592

    Article  MATH  Google Scholar 

  72. Ma J, Li W, Ren C, Khan JA, Li C (2019) Realizing highly coordinated, rapid and sustainable nucleate boiling in microchannels on HFE-7100. Int J Heat Mass Transf 133:1219–1229

    Article  Google Scholar 

  73. Prajapati YK, Pathak M, Khan MK (2015) A comparative study of flow boiling heat transfer in three different configurations of microchannels. Int J Heat Mass Transf 85:711–722

    Article  Google Scholar 

  74. Law M, Lee PS (2015) A comparative study of experimental flow boiling heat transfer and pressure characteristics in straight and oblique-finned microchannels. Int J Heat Mass Transf 85:797–810

    Article  Google Scholar 

  75. Law M, Lee PS, Balasubramanian K (2014) Experimental investigation of flow boiling heat transfer in novel oblique-finned microchannels. Int J Heat Mass Transf 76:419–431

    Article  Google Scholar 

  76. Prajapati YK, Pathak M, Khan MK (2017) Numerical investigation of subcooled flow boiling in segmented finned microchannels. Int Commun Heat Mass 86:215–221

    Article  Google Scholar 

  77. Li WM, Yang FH, Alam T, Qu XP, Peng BL, Khan J, Li C (2018) Enhanced flow boiling in microchannels using auxiliary channels and multiple micronozzles (I): characterizations of flow boiling heat transfer. Int J Heat Mass Transf 116:208–217

    Article  Google Scholar 

  78. Kosar A, Kuo CJ, Peles Y (2005) Reduced pressure boiling heat transfer in rectangular microchannels with interconnected reentrant cavities. ASME J Heat Transf 127:1106–1114

    Article  Google Scholar 

  79. Deng D, Xie Y, Huang Q et al (2017) On the flow boiling enhancement in interconnected reentrant microchannels. Int J Heat Mass Transf 108:453–467

    Article  Google Scholar 

  80. Kuo CJ, Peles Y (2008) Flow boiling instabilities in microchannels and means for mitigation by reentrant cavities. ASME J Heat Transf 130:351–358

    Article  Google Scholar 

  81. Kuo CJ, Peles Y (2009) Flow boiling of coolant HFE-7000 inside structured and plain wall microchannels. ASME J Heat Transf 129:121011

    Article  Google Scholar 

  82. Sitar A, Golobic I (2016) Effect of nucleation cavities on enhanced boiling heat transfer in microchannels Nanoscale microscale Thermophys. Eng. 20:33–50

    Google Scholar 

  83. Deng D, Chen L, Wan W, Fu T, Huang X (2019) Flow boiling performance in pin fin- interconnected reentrant microchannels heat sink in different operational conditions. Appl Therm Eng 150:1260–1272

    Article  Google Scholar 

  84. Qu W, Mudawar I (2004) Transport phenomena in two-phase micro-channel heat sinks. ASME J Heat Transf 126:213–224

    Google Scholar 

  85. Yang F, Dai X, Kuo C, Peles Y, Khan J, Li C (2013) Enhanced flow boiling in microchannels by self-sustained high frequency two-phase oscillations. Int J Heat Mass Transf 58:402–412

    Article  Google Scholar 

  86. Kandlikar SG, Kuan WK, Willistein DA, Borrelli J (2006) Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. J Heat Transf 128:389–396

    Article  Google Scholar 

  87. Kosar A, Kuo CJ, Peles Y (2006) Suppression of boiling flow oscillations in parallel microchannels by inlet restrictors. J Heat Transf 128:251–260

    Article  Google Scholar 

  88. Szczukiewicz S, Borhani N, Thome JR (2013) Two-phase flow operational maps for multi-microchannel evaporators. Int J Heat Fluid Fl 42:176–189

    Article  Google Scholar 

  89. Park JE, Thome JR, Michel B. (2009) Effect of Inlet Orifice on Saturated CHF and Flow Visualization in Multi-microchannel Heat Sinks. 2009 25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium. March 15–19. San Jose, CA, USA

  90. Morshed AKMM, Yang F, Ali MY, Khan JA, Li C (2012) Enhanced flow boiling in a microchannel with integration of nanowires. Appl Therm Eng 32:68–75

    Article  Google Scholar 

  91. Li D, Wu GS, Wang W, Wang YD, Liu D, Zhang DC et al (2012) Enhancing flow boiling heat transfer in microchannels for thermal management with monolithically- integrated silicon nanowires. Nano Lett 12:385–3390

    Article  Google Scholar 

  92. Liu TY, Li PL, Liu CW, Gau C (2011) Boiling flow characteristics in microchannels with very hydrophobic surface to super-hydrophilic surface. Int J Heat Mass Transf 54:126–134

    Article  Google Scholar 

  93. Alam T, Li W, Yang F, Chang W, Li J, Wang Z, Khan J, Li C (2016) Force analysis and bubble dynamics during flow boiling in silicon nanowire microchannels. Int J Heat Mass Transf 101:915–926

    Article  Google Scholar 

  94. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:1–4

    Article  Google Scholar 

  95. Sarwar MS, Jeong YH, Chang SH (2007) Subcooled flow boiling CHF enhancement using porous surface coatings. Int J Heat Mass Transf 50:3649–3657

    Article  Google Scholar 

  96. Sujith K, Suresh S, Yang L, Yang Q, Aravind S (2014) Flow boiling heat transfer enhancement using carbon nanotube coatings. Appl Therm Eng 65:166–175

    Article  Google Scholar 

  97. Khanikar V, Mudawar I, Fisher T (2009) Effects of carbon nanotube coating on flow boiling in a micro-channel. Int J heat mass Tran volume 52. Issues 15–16:3805–3817

    Google Scholar 

  98. Dai X, Huang X, Yang F, Li X, Sightler J, Yang Y, Li C (2013) Enhanced nucleate boiling on horizontal hydrophobic-hydrophilic carbon nanotube coatings. Appl Phys Lett 102:161605–1–161605-5

    Article  Google Scholar 

  99. Khanikar V, Mudawar I, Fisher TS (2009) Flow boiling in a Micro-Channel coated with carbon nanotubes. IEEE T Compon Pack T 32:639–649

    Article  Google Scholar 

  100. Webb RL (1981) The evolution of enhanced surface geometries for nucleate boiling. Heat Transfer Eng 2:46–69

    Article  Google Scholar 

  101. Sun Y, Zhang L, Xu H, Zhong X (2011) Flow boiling enhancement of FC-72 from microporous surfaces in minichannels. Exp Thermal Fluid Sci 35:1418–1426

    Article  Google Scholar 

  102. Bai P, Tang T, Tang B (2013) Enhanced flow boiling in parallel microchannels with metallic porous coating. Appl Therm Eng 58:291–297

    Article  Google Scholar 

  103. Zhang S, Sun Y, Yuan W, Tang Y, Tang H, Tang K (2018) Effects of heat flux, mass flux and channel width on flow boiling performance of porous interconnected microchannel nets. J Therm Anal 90:310–318

    Google Scholar 

  104. Kandlikar SG, Kuan WK, Willistein DA, Borrelli J (2006) Stabilization of flow boiling in microchannels using pressure drop elements and fabricated nucleation sites. J Heat Transf 128(4):389–396

    Article  Google Scholar 

  105. Yang F, LiW DX, Li C (2016) Flow boiling heat transfer of HFE-7000 in nanowire-coated microchannels. Appl Therm Eng 93:260–268

    Article  Google Scholar 

  106. Zong LX, Xia GD, Jia YT, Liu L, Ma DD, Wang J (2020) Flow boiling instability characteristics in microchannels with porous-wall. Int J Heat Mass Transf 146:118863

    Article  Google Scholar 

  107. Milnes PD, Julie ES, Josef M, Kenneth EG (2011) Adiabatic and diabatic two-phase venting flow in a microchannel. Int J Multiphase F 37:1135–1146

    Article  Google Scholar 

  108. David MP, Miler J, Steinbrenner J, Yang Y, Touzelbaev M, Kenneth E (2011) Goodson. Hydraulic and thermal characteristics of a vapor venting two-phase microchannel heat exchanger. Int J Heat Mass Transf 54:5504–5516

    Article  Google Scholar 

  109. Apreotesi M, Pence D, Liburdy J. Vapor Extraction From Flow Boiling in a Fractal-Like Branching Heat Sink. IPACK2007–33423, 321–328

  110. Chen F, Milnes D, Anita R, Kenneth G (2010) Volume of fluid simulation of boiling flow in a vapor-venting microchannel. Front Heat Mass Transf (FHMT) 1:013002

    Google Scholar 

  111. Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles, Tech. rep. Argonne National Lab., IL (United States)

    Google Scholar 

  112. Sahooli M, Sabbaghi S (2013) Investigation of thermal properties of cuo nanoparticles on the ethylene glycol–water mixture. Mater Lett 93:254–257

    Article  Google Scholar 

  113. Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718

    Article  Google Scholar 

  114. Yu L, Sur A, Liu D (2015) Flow boiling heat transfer and two-phase flow instability of nanofluids in a minichannel. J Heat Transf 137:051502

    Article  Google Scholar 

  115. Xu L, Xu J (2012) Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel. Int J Heat Mass Transf 55:5673–5686

    Article  Google Scholar 

  116. Duursma G, Sefiane K, Dehaene A, Harmand S, Wang Y (2015) Flow and heat transfer of single-and two-phase boiling of nanofluids in microchannels. Heat Transfer Eng 36:1252–1265

    Article  Google Scholar 

  117. Vafaei S, Wen D (2010) Critical heat flux (CHF) of subcooled flow boiling of alumina nanofluids in a horizontal microchannel. J Heat Transf 132:102404

    Article  Google Scholar 

  118. Wu X, Wu H, Cheng P (2009) Pressure drop and heat transfer of Al2O3-H2O nanofluids through silicon microchannels. J Micromech Microeng 19:105020

    Article  Google Scholar 

  119. Liang G, Mudawar I (2019) Review of single-phase and two-phase nanofluid heat transfer in macro-channels and micro-channels. Int J Heat Mass Transf 136:324–354

    Article  Google Scholar 

  120. Wang S, Chen HH, Chen CL (2019) Enhanced flow boiling in silicon nanowire-coated manifold microchannels. Appl Therm Eng 148:1043–1057

    Article  Google Scholar 

  121. Deng D, Wan W, Shao H, Tang Y, Feng J, Zeng J (2015) Effects of operation parameters on flow boiling characteristics of heat sink cooling systems with reentrant porous microchannels. Energ Convers Manage 96:340–351

    Article  Google Scholar 

  122. Xu J, Yu X, Jin W (2016) Porous-wall microchannels generate high frequency “eye-blinking” interface oscillation, yielding ultra-stable wall temperatures. Int J Heat Mass Transf 101:341–353

    Article  Google Scholar 

Download references

Acknowledgements

The study was supported by Shandong Provincial Natural Science Foundation (No.: ZR2020ME170, ZR2016EEQ29), the Fundamental Research Funds for the Central Universities (No.: 18CX02077A), Research Foundation for Talents of China University of Petroleum (East China) (No.: YJ201501018), and National Natural Science Foundation of China (No. 51606044).

Funding

Shandong Provincial Natural Science Foundation, China (No.: ZR2020ME170, ZR2016EEQ29), the Fundamental Research Funds for the Central Universities (No.: 18CX02077A), Research Foundation for Talents of China University of Petroleum (East China) (No.: YJ201501018), and National Natural Science Foundation of China (No. 51606044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengjie Song.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, N., Zhuang, J., He, T. et al. A critical review on measures to suppress flow boiling instabilities in microchannels. Heat Mass Transfer 57, 889–910 (2021). https://doi.org/10.1007/s00231-020-03009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00231-020-03009-2

Keywords

Navigation