Skip to main content

Advertisement

Log in

Geochemical phases of soil and the bioaccessibility of some elements in soils and vegetables from boron mines

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The bioaccessibility of some elements (As, B, Cd, Cu, Fe, Mn, Ni and Zn) in soils and vegetables was determined using the physiologically based extraction test. An investigation of the geochemical phases of soils through sequential extraction methods followed by ICP-MS detection was also undertaken. Samples were collected from Iskele, Begendikler and Yolbasi villages in the Bigadic region and Yildiz village in the Susurluk region of Balikesir province, Turkey. All of these villages are close to boron mines. Principal component analysis and correlation analysis demonstrated the interrelationship between the bioaccessibility values of these elements in the gastric and intestinal extracts of soils as well as the plant samples grown in those soils and the elements’ concentrations in the different soil fractions. From the bioaccessible concentrations of the elements in the intestinal phases, it was shown that the amounts of As, B, Cu, Mn and Ni in some plant samples were higher than the recommended and tolerable values for human consumption. The bioaccessibilty of these elements in the soils and plants were statistically related with the concentrations of these elements in the labile phases of the soil. The methodology adopted here would be applicable to determining interactions between elements and soil fractions and the interrelationships between bioaccessibility data and soil fractions for any soil samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alan, M., & Kara, D. (2019a). Comparison of a new sequential extraction method and the BCR sequential extraction method for mobility assessment of elements around boron mines in Turkey. Talanta, 194, 189–198.

    Article  CAS  Google Scholar 

  • Alan, M., & Kara, D. (2019b). Assessment of sequential extraction methods for the prediction of bioavailability of elements in plants grown on agricultural soils near to boron mines in Turkey. Talanta, 200, 41–50.

    Article  CAS  Google Scholar 

  • Cave, M.R., Wragg, J., Palumbo, B., & Klinck, B.A. (2002). Measurement of the bioaccessibility of arsenic in UK soils. Technical report. R&D Technical Report P5-062/TR02. British Geological Survey. Environmental Agency.

  • Cox, S., Chelliah, M. M., McKinley, J., Palmer, S., Ofterdinger, U., Young, M., Cave, M., & Wragg, J. (2013). The importance of solid-phase distribution on the oral bioaccessibility of Ni and Cr in soils overlying Palaeogene basalt lavas, Northern Ireland. Environmental Geochemistry and Health, 35, 553–567.

    Article  CAS  Google Scholar 

  • Crews, H. M., Burrell, J. A., & McWeeny, D. J. (1983). Preliminary enzymolysis studies on trace element extractability from food. Journal of the Science of Food and Agriculture, 34, 997–1004.

    Article  CAS  Google Scholar 

  • De Souza Neto, H. F., Da Silveira Pereira, W. V., Dias, Y. N., De Souza, E. S., Teixeira, R. A., De Lima, M. W., Ramos, S. J., Do Amarante, C. B., & Fernandes, A. R. (2020). Environmental and human health risks of arsenic in gold mining areas in the eastern Amazon. Environmental Pollution, 265(Part B), 114969.

    Article  CAS  Google Scholar 

  • EFSA (2009). European Food Safety Authority, Scientific Opinion of the Panel on Contaminants in the Food Chain on a request from the European Commission on cadmium in food. The EFSA Journal (2009) 980, 1-139. http://www.efsa.europa.eu/sites/default/files/scientific_output/files/main_documents/980.pdf Accessed 11.10.2018.

  • EFSA (2010). European Food Safety Authority, Scientific Opinion on Arsenic in Food. EFSA Panel on Contaminants in the Food Chain (CONTAM) Parma, Italy. URL http://www.efsa.europa.eu/en/efsajournal/pub/1351.htm (Accessed 30.1.2013).

  • Ellickson, K. M., Meeker, R. J., Gallo, M. A., Buckley, B. T., & Lioy, P. J. (2001). Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Archives of Environmental Contamination and Toxicology, 40, 128–135.

    Article  CAS  Google Scholar 

  • Hack, A., & Selenka, F. (1996). Mobilization of PAH and PCB from contaminated soil using a digestive tract model. Toxicology Letters, 88, 199–210.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2006a). Uptake of heavy metals by vegetable plants grown on contaminated soil and their bioavailability in the human gastrointestinal tract. Food Additives & Contaminants, 23, 36–48.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2006b). In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. TrAC Trends in Analytical Chemistry, 25, 876–886.

    Article  CAS  Google Scholar 

  • Intawongse, M., & Dean, J. R. (2008). Use of the physiologically-based extraction test to assess the oral bioaccessibility of metals in vegetable plants grown in contaminated soil. Environmental Pollution, 152, 60–72.

    Article  CAS  Google Scholar 

  • Kafaoglu, B., Fisher, A., Hill, S., & Kara, D. (2016). Determination and evaluation of element bioaccessibility in some nuts and seeds by in-vitro gastro-intestinal method. Journal of Food Composition and Analysis, 45, 58–65.

    Article  CAS  Google Scholar 

  • Karadaş, C., & Kara, D. (2011). In vitro gastro-intestinal method for the assessment of heavy metal bioavailability in contaminated soils. Environmental Science and Pollution Research, 18, 620–628.

    Article  Google Scholar 

  • Karadaş, C., & Kara, D. (2012). Chemometric evaluation for the relation of BCR sequential extraction method and in vitro gastro-intestinal method for the assessment of metal bioavailability in contaminated soils in Turkey. Environmental Science and Pollution Research, 19, 1280–1295.

    Article  Google Scholar 

  • Khelifi, F., Melki, A., Hamed, Y., Adamo, P., & Caporale, A. G. (2019). Environmental and human health risk assessment of potentially toxic elements in soil, sediments, and ore-processing wastes from a mining area of southwestern Tunisia. Environmental Geochemistry and Health, 42, 4125–4139. https://doi.org/10.1007/s10653-019-00434-z.

    Article  CAS  Google Scholar 

  • Laha, T., Gope, M., Datta, S., Masto, R. E., & Balachandran, S. (2020). Oral bioaccessibility of potentially toxic elements (PTEs) and related health risk in urban playground soil from a medieval bell metal industrial town Khagra. India. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00715-y.

  • Li, W., & Wang, W. X. (2019). In vivo oral bioavailability of fish mercury and comparison within vitro bioaccessibility. Science of the Total Environment, 683, 648–658.

    Article  CAS  Google Scholar 

  • Li, S. W., Sun, H. J., Li, H. B., Luo, J., & Ma, L. Q. (2016). Assessment of cadmium bioaccessibility to predict its bioavailability in contaminated soils. Environment International, 94, 600–606.

    Article  CAS  Google Scholar 

  • Luo, X. S., Yu, S., & Li, X. D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004.

    Article  CAS  Google Scholar 

  • Marschner, B., Welge, P., Hack, A., Wittsiepe, J., & Wilhelm, M. (2006). Comparison of soil Pb in vitro bioaccessibility and in vivo bioavailability with Pb pools from a sequential soil extraction. Environmental Science & Technology, 40, 2812–2818.

    Article  CAS  Google Scholar 

  • Meunier, L., Wragg, J., Koch, I., & Reimer, K. J. (2010). Method variables affecting the bioaccessibility of arsenic in soil. Journal of Environmental Science and Health, Part A, 45, 517–526.

    Article  CAS  Google Scholar 

  • Miller, D. D., Schricker, B. R., Rasmussen, R. R., & Campen, D. V. (1981). An in vitro method for estimation of iron availability from meals. The American Journal of Clinical Nutrition, 34, 2248–2256.

    Article  CAS  Google Scholar 

  • Mokhtarzadeh, Z., Keshavarzi, B., Moore, F., Marsan, F. A., & Padoan, E. (2020). Potentially toxic elements in the Middle East oldest oil refinery zone soils: Source apportionment, speciation, bioaccessibility and human health risk assessment. Environmental Science and Pollution Research, 27, 40573–40591. https://doi.org/10.1007/s11356-020-09895-7.

    Article  CAS  Google Scholar 

  • Palumbo-Roe, B., Cave, M. R., Klinck, B. A., Wragg, J., Taylor, H., O’Donnell, K., & Shaw, R. A. (2005). Bioaccessibility of arsenic in soils developed over Jurassic ironstones in eastern England. Environmental Geochemistry and Health, 27, 121–130.

    Article  CAS  Google Scholar 

  • Quazi, S., Sarkar, D., & Datta, R. (2010). Effect of soil aging on arsenic fractionation and bioaccessibility in inorganic arsenical pesticide contaminated soils. Applied Geochemistry, 25, 1422–1430.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., & Griepink, B. (1993). Conclusions of the workshop - Single and sequential extraction in sediments and soils. International Journal of Environmental Analytical Chemistry, 51, 231–235.

    Article  Google Scholar 

  • Reis, A. P., Patinha, C., Wragg, J., Dias, A. C., Cave, M., Sousa, A. J., Costa, C., Cachada, A., da Silva, E. F., Rocha, F., & Duarte, A. (2014). Geochemistry, mineralogy, solid-phase fractionation and oral bioaccessibility of lead in urban soils of Lisbon. Environmental Geochemistry and Health, 36, 867–881.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Link, T. E., Schoof, R., Chaney, R. L., Freeman, G. B., & Bergstrom, P. (1993). Development of an in vitro screening test to evaluate the in vivo bioaccessibility of ingested mine-waste lead. Environmental Science & Technology, 27, 2870–2877.

    Article  CAS  Google Scholar 

  • Ruby, M., Davis, A., Schoof, R., Eberle, S., & Sellstone, C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science & Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Schroder, J. L., Basta, N. T., Casteel, S. W., Evans, T. J., Payton, M., & Si, J. (2004). Validation of the in vitro gastrointestinal (IVG) method to estimate relative bioavailable lead in contaminated soil. Journal of Environmental Quality, 33, 513–521.

    Article  CAS  Google Scholar 

  • Sultana, M. S., Wang, P., Yin, N., Rahman, M. H., Du, H., Cai, X., Fu, Y., & Cui, Y. (2020). Assessment of nutrients effect on the bioaccessibility of Cd and Cu in contaminated soil. Ecotoxicology and Environmental Safety, 202(1), 110913.

    Article  CAS  Google Scholar 

  • Tang, W., Xia, Q., Shan, B., & Ng, J. C. (2018). Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastro intestinal simulation models. Science of the Total Environment, 631–632, 1582–1589.

    Article  Google Scholar 

  • Tessier, A., Campbell, P. G. C., & Bisson, M. (1979). Sequential extraction procedure for speciation of particulate trace metals. Analytical Chemistry, 51, 844–851.

    Article  CAS  Google Scholar 

  • Ure, A., Quevauviller, P., Muntau, H., & Griepink, B. (1993). Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135–151.

    Article  CAS  Google Scholar 

  • USDA (2010a). Food and Nutrition Board, Institute of Medicine, National Academies, Dietary Reference Intakes (DRIs): Adequate Intakes and Tolerable Upper Intake Levels http://www.nal.usda.gov/fnic/DRI/DRI_Tables/recommended_intakes_individuals.pdf (accessed 01.05.10).

  • USDA (2010b). Food and Nutrition Board, Institute of Medicine, National Academies, Dietary Reference Intakes (DRIs): Recommended Dietary Allowances and Adequate Intakes http://www.nal.usda.gov/fnic/DRI/DRI_Tables/UL_vitamins_elements.pdf (accessed 01.05.10).

  • Wang, P., Yin, N., Cai, X., Du, H., Li, Y., Sun, G., & Cui, Y. (2020). Comparison of bioaccessibility and relative bioavailability of arsenic in rice bran: The in vitro with PBET/SHIME and in vivo with mice model. Chemosphere, 259, 127443.

    Article  CAS  Google Scholar 

  • WHO (1996). Trace Elements in Human Nutrition and Health. World Health Organization, Geneva, ISBN: 92 4 156173 4 Macmillan/Ceuterick.

  • Witt III, E. C., Shi, H., Wronkiewicz, D. J., & Pavlowsky, R. T. (2014). Phase partitioning and bioaccessibility of Pb in suspended dust from unsurfaced roads in Missouri—A potential tool for determining mitigation response. Atmospheric Environment, 88, 90–98.

    Article  CAS  Google Scholar 

  • Wragg, J., & Cave, M. R. (2012). Assessment of a geochemical extraction procedure to determine the solid phase fractionation and bioaccessibility of potentially harmful elements in soils: A case study using the NIST 2710 reference soil. Analytica Chimica Acta, 722, 43–54.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., & Nathanail, P. (2007). A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 42, 1303–1315.

    Article  CAS  Google Scholar 

  • Wragg, J., Broadway, A., Cave, M. R., Fordyce, F. M., Roe, B. P., Beriro, D. J., Farmer, J. G., Graham, M. C., Ngwenya, B. T., & Bewley, R. J. F. (2017). Linkage between solid phase apportionment and bioaccessible arsenic, chromium and lead in soil from Glasgow, Scotland, UK. The geosciences in Europe’s urban sustainability: Lessons from Glasgow and beyond (CUSP), 108(2-3), 217–230.

    Google Scholar 

  • Wragg, J., Cave, M., Hamilton, E., & Lister, T. R. (2018). The link between soil geochemistry in South-West England and human exposure to soil arsenic. Minerals, 8, 570. https://doi.org/10.3390/min8120570.

    Article  CAS  Google Scholar 

  • Xie, J. J., Yuan, C. G., Xie, J., Shen, Y. W., He, K. Q., & Zhang, K. G. (2019). Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding City, China. Environmental Pollution, 252, 336–343.

    Article  CAS  Google Scholar 

  • Zagury, G. J., Rincon Bello, J. A., & Guney, M. (2016). Valorization of a treated soil via amendments: Fractionation and oral bioaccessibility of Cu, Ni, Pb, and Zn. Environmental Monitoring and Assessment, 188, 222.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Balikesir University (Project No: 2008/13) and The Scientific and Technological Research Council of Turkey (Project No: 110T0031) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derya Kara.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alan, M., Kara, D. Geochemical phases of soil and the bioaccessibility of some elements in soils and vegetables from boron mines. Environ Monit Assess 193, 17 (2021). https://doi.org/10.1007/s10661-020-08808-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08808-y

Keywords

Navigation