Skip to main content

Advertisement

Log in

18 Additional Amino Acids of the Signal Peptide of the Bombyx mori Nucleopolyhedrovirus GP64 Activates Immunoglobulin Binding Protein (BiP) Expression by RNA-seq Analysis

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

GP64 is the key membrane fusion protein of Group I baculovirus, and while the Bombyx mori nucleopolyhedrovirus (BmNPV) GP64 contains a longer n-region (18 amino acid) of the signal peptide than does the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), the function of the n-region has not been determined. In this study, we first showed that n-region is required for membrane protein localization in BmN cells, then the transcriptome sequencing was conducted on proteins guided by different signal peptide regions, and the results were analyzed and validated by quantitative PCR and luciferase assays. The results indicated that 1049 differentially expressed genes (DEGs) were identified among the different region of signal peptides and the control. With the n-region, the protein export pathway was upregulated significantly, the Wnt-1 signaling pathway was downregulated, and BiP was significantly activated by the GP64 full-length signal peptide. Furthermore, RNA interference on BiP efficiently increased luciferase secretion. These results indicate that the GP64 n-region plays a key role in protein expression and regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spenger A, Grabherr R, Tollner L, Katinger H, Ernst W (2002) Altering the surface properties of baculovirus Autographa californica NPV by insertional mutagenesis of the envelope protein gp64. Eur J Biochem 269(18):4458–4467. https://doi.org/10.1046/j.1432-1033.2002.03135.x

    Article  CAS  PubMed  Google Scholar 

  2. Yu Q, Blissard GW, Liu TX, Li Z (2016) Autographa californica multiple nucleopolyhedrovirus GP64 protein: analysis of domain I and V amino acid interactions and membrane fusion activity. Virology 488:259–270. https://doi.org/10.1016/j.virol.2015.11.025

    Article  CAS  PubMed  Google Scholar 

  3. Gomi S, Majima K, Maeda S (1999) Sequence analysis of the genome of Bombyx mori nucleopolyhedrovirus. J Gen Virol 80(Pt 5):1323–1337. https://doi.org/10.1099/0022-1317-80-5-1323

    Article  CAS  PubMed  Google Scholar 

  4. Iwanaga M, Takaya K, Katsuma S, Ote M, Tanaka S, Kamita SG, Kang W, Shimada T, Kobayashi M (2004) Expression profiling of baculovirus genes in permissive and nonpermissive cell lines. Biochem Biophys Res Commun 323(2):599–614. https://doi.org/10.1016/j.bbrc.2004.08.114

    Article  CAS  PubMed  Google Scholar 

  5. Katou Y, Ikeda M, Kobayashi M (2006) Abortive replication of Bombyx mori nucleopolyhedrovirus in Sf9 and High Five cells: defective nuclear transport of the virions. Virology 347(2):455–465. https://doi.org/10.1016/j.virol.2005.11.043

    Article  CAS  PubMed  Google Scholar 

  6. Dong S, Wang M, Qiu Z, Deng F, Vlak JM, Hu Z, Wang H (2010) Autographa californica multicapsid nucleopolyhedrovirus efficiently infects Sf9 cells and transduces mammalian cells via direct fusion with the plasma membrane at low pH. J Virol 84(10):5351–5359. https://doi.org/10.1128/JVI.02517-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Huang J, Hao B, Cheng C, Liang F, Shen X, Cheng X (2014) Entry of Bombyx mori nucleopolyhedrovirus into BmN cells by cholesterol-dependent macropinocytic endocytosis. Biochem Biophys Res Commun 453(1):166–171. https://doi.org/10.1016/j.bbrc.2014.09.073

    Article  CAS  PubMed  Google Scholar 

  8. Huang J, Li C, Tang X, Liu L, Nan W, Shen X, Hao B (2019) Transport via macropinocytic vesicles is crucial for productive infection with Bombyx Mori nucleopolyhedrovirus. Viruses 11(7):668. https://doi.org/10.3390/v11070668

    Article  CAS  PubMed Central  Google Scholar 

  9. Huang J, Li C, Fan F, Liu N, Boadi F, Shen X, Hao B (2019) Methyl-beta-cyclodextrin-induced macropinocytosis results in increased infection of Sf21 cells by Bombyx mori nucleopolyhedrovirus. Viruses 11(10):937. https://doi.org/10.3390/v11100937

    Article  CAS  PubMed Central  Google Scholar 

  10. Huang J, Liu N, Shen X, Hao B (2019) Preincubation with a low concentration of methyl-beta-cyclodextrin enhances baculovirus expression system productivity. Biotechnol Lett 41(8–9):921–928. https://doi.org/10.1007/s10529-019-02708-z

    Article  CAS  PubMed  Google Scholar 

  11. Maeda S, Kamita SG, Kondo A (1993) Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6-kilobase-pair DNA fragment originating from Bombyx mori NPV. J Virol 67(10):6234–6238. https://doi.org/10.1016/0166-0934(93)90067-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Argaud O, Croizier L, Lopez-Ferber M, Croizier G (1998) Two key mutations in the host-range specificity domain of the p143 gene of Autographa californica nucleopolyhedrovirus are required to kill Bombyx mori larvae. J Gen Virol 79(Pt 4):931–935. https://doi.org/10.1099/0022-1317-79-4-931

    Article  CAS  PubMed  Google Scholar 

  13. Croizier G, Croizier L, Argaud O, Poudevigne D (1994) Extension of Autographa californica nuclear polyhedrosis virus host range by interspecific replacement of a short DNA sequence in the p143 helicase gene. Proc Natl Acad Sci USA 91(1):48–52. https://doi.org/10.1073/pnas.91.1.48

    Article  CAS  PubMed  Google Scholar 

  14. Kamita SG, Maeda S (1997) Sequencing of the putative DNA helicase-encoding gene of the Bombyx mori nuclear polyhedrosis virus and fine-mapping of a region involved in host range expansion. Gene 190(1):173–179. https://doi.org/10.1016/S0378-1119(96)00671-3

    Article  CAS  PubMed  Google Scholar 

  15. Rohrmann GF (2011) Baculovirus molecular biology. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  16. Rohrmann GF (2019) Baculovirus molecular biology [internet], 4th edn. National Center for Biotechnology Information, Bethesda

    Google Scholar 

  17. Xu YP, Gu LZ, Lou YH, Cheng RL, Xu HJ, Wang WB, Zhang CX (2012) A baculovirus isolated from wild silkworm encompasses the host ranges of Bombyxmori nucleopolyhedrosis virus and Autographacalifornica multiple nucleopolyhedrovirus in cultured cells. J Gen Virol 93(Pt 11):2480–2489. https://doi.org/10.1099/vir.0.043836-0

    Article  CAS  PubMed  Google Scholar 

  18. Jarvis DL, Wills L, Burow G, Bohlmeyer DA (1998) Mutational analysis of the N-linked glycans on Autographacalifornica nucleopolyhedrovirus gp64. J Virol 72(12):9459–9469. https://doi.org/10.1128/JVI.72.12.9459-9469.1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Von Heijne G (1990) The signal peptide. J Membr Biol 115(3):195–201. https://doi.org/10.1007/bf01868635

    Article  Google Scholar 

  20. Inouye S, Soberon X, Franceschini T, Nakamura K, Itakura K, Inouye M (1982) Role of positive charge on the amino-terminal region of the signal peptide in protein secretion across the membrane. Proc Natl Acad Sci USA 79(11):3438–3441. https://doi.org/10.1073/pnas.79.11.3438

    Article  CAS  PubMed  Google Scholar 

  21. Guo H, Sun J, Li X, Xiong Y, Wang H, Shu H, Zhu R, Liu Q, Huang Y, Madley R, Wang Y, Cui J, Arvan P, Liu M (2018) Positive charge in the n-region of the signal peptide contributes to efficient post-translational translocation of small secretory preproteins. J Biol Chem 293(6):1899–1907. https://doi.org/10.1074/jbc.RA117.000922

    Article  CAS  PubMed  Google Scholar 

  22. Von Heijne G (1984) Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3(10):2315–2318. https://doi.org/10.1002/j.1460-2075.1984.tb02132.x

    Article  Google Scholar 

  23. Medina-Gali R, Belló-Pérez M, Martínez-López A, Falcó A, Ortega-Villaizan M, Encinar JA, Novoa B, Coll J, Perez L (2018) Chromatin immunoprecipitation and high throughput sequencing of SVCV-infected zebrafish reveals novel epigenetic histone methylation patterns involved in antiviral immune response. Fish Shellfish Immunol 82:514–521. https://doi.org/10.1016/j.fsi.2018.08.056

    Article  CAS  PubMed  Google Scholar 

  24. Wang G, Na S, Qin L (2019) Uncovering the cellular and humoral immune responses of Antheraeapernyihemolymph to Antheraeapernyinucleopolyhedrovirus infection by transcriptome analysis. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2019.107205

    Article  PubMed  Google Scholar 

  25. Huang J, Li J, Cheng C, Tang X, Shen X, Hao B (2019) An amino acid duplication/insertion in the Bm126 gene of Bombyxmori nucleopolyhedrovirus alters viral gene expression as shown by differential gene expression analysis. Arch Virol 164(3):831–838. https://doi.org/10.1007/s00705-018-04144-2

    Article  CAS  PubMed  Google Scholar 

  26. Qi BX, Chen YJ, Su R, Li YF, Zheng GL, Li CY (2017) Establishment of insect cell lines expressing green fluorescent protein on cell surface based on AcMNPV GP64 membrane fusion characteristic. Cytotechnology 69(5):775–783. https://doi.org/10.1007/s10616-017-0086-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Haas IG (1994) BiP (GRP78), an essential hsp70 resident protein in the endoplasmic reticulum. Experientia 50(11–12):1012–1020. https://doi.org/10.1007/bf01923455

    Article  CAS  PubMed  Google Scholar 

  28. Quinan BR, Flesch IE, Pinho TM, Coelho FM, Tscharke DC, da Fonseca FG (2014) An intact signal peptide on dengue virus E protein enhances immunogenicity for CD8(+) T cells and antibody when expressed from modified vaccinia Ankara. Vaccine 32(25):2972-2979. https://doi.org/10.1016/j.vaccine.2014.03.093

    Article  CAS  PubMed  Google Scholar 

  29. Liu H, Wu R, Yuan L, Tian G, Huang X, Wen Y, Ma X, Huang Y, Yan Q, Zhao Q, Cao S, Wen X (2017) Introducing a cleavable signal peptide enhances the packaging efficiency of lentiviral vectors pseudotyped with Japanese encephalitis virus envelope proteins. Virus Res. https://doi.org/10.1016/j.virusres.2016.12.007

  30. Lu R, Zhang T, Song S, Zhou M, Jiang L, He Z, Yuan Y, Yuan T, Lu Y, Yan K, Cheng Y (2019). Accurately cleavable goat β-lactoglobulin signal peptide efficiently guided translation of a recombinant human plasminogen activator in transgenic rabbit mammary gland. Biosci Rep 39(6):BSR20190596

    Article  CAS  Google Scholar 

  31. Li Y, Luo L, Schubert M, Wagner R, Kang CY (1993) Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 67(7):4415–4420. https://doi.org/10.1016/0166-0934(93)90081-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pobre KFR, Poet GJ, Hendershot LM (2019) The endoplasmic reticulum (ER) chaperone BiP is a master regulator of ER functions: getting by with a little help from ERdj friends. J Biol Chem 294(6):2098–2108. https://doi.org/10.1074/jbc.REV118.002804

    Article  CAS  PubMed  Google Scholar 

  33. Awe K, Lambert C, Prange R (2008) Mammalian BiP controls posttranslational ER translocation of the hepatitis B virus large envelope protein. FEBS Lett 582(21–22):3179–3184. https://doi.org/10.1016/j.febslet.2008.07.062

    Article  CAS  PubMed  Google Scholar 

  34. Oresic K, Tortorella D (2008) Endoplasmic reticulum chaperones participate in human cytomegalovirus US2-mediated degradation of class I major histocompatibility complex molecules. J General Virol 89(Pt 5):1122–1130. https://doi.org/10.1099/vir.0.83516-0

    Article  CAS  Google Scholar 

  35. Liberman E, Fong YL, Selby MJ, Choo QL, Cousens L, Houghton M, Yen TS (1999) Activation of the grp78 and grp94 promoters by hepatitis C virus E2 envelope protein. J Virol 73(5):3718–3722

    Article  CAS  Google Scholar 

  36. Peng C, Shi C, Cao X, Li Y, Liu F, Lu F (2019) Factors influencing recombinant protein secretion efficiency in gram-positive bacteria: signal peptide and beyond. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2019.00139

    Article  PubMed  PubMed Central  Google Scholar 

  37. Morito D, Nagata K (2015) Pathogenic hijacking of ER-associated degradation: is ERAD flexible? Mol Cell 59(3):335–344. https://doi.org/10.1016/j.molcel.2015.06.010

    Article  CAS  PubMed  Google Scholar 

  38. Ding Y, Li XR, Yang KY, Huang LH, Hu G, Gao K (2013) Proteomics analysis of gastric epithelial AGS cells infected with Epstein-Barr virus. Asian Pac J Cancer Prev 14(1):367–372. https://doi.org/10.7314/apjcp.2013.14.1.367

    Article  PubMed  Google Scholar 

  39. Di Salvo ML, Delle Fratte S, De Biase D, Bossa F, Schirch V (1998) Purification and characterization of recombinant rabbit cytosolic serine hydroxymethyltransferase. Protein Expr Purif 13(2):177–183. https://doi.org/10.1006/prep.1998.0890

    Article  PubMed  Google Scholar 

  40. Papp H, Zeghbib S, Foldes F, Banfai K, Madai M, Kemenesi G, Urban P, Kvell K, Jakab F (2020) Crimean-Congo hemorrhagic fever virus infection triggers the upregulation of the Wnt signaling pathway inhibitor genes. Virus Genes 56:508–514. https://doi.org/10.1007/s11262-020-01759-z

    Article  CAS  PubMed  Google Scholar 

  41. Harmon B, Bird SW, Schudel BR, Hatch AV, Rasley A, Negrete OA (2016) A genome-wide RNA interference screen identifies a role for Wnt/beta-catenin signaling during rift valley fever virus infection. J Virol 90(16):7084–7097. https://doi.org/10.1128/JVI.00543-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 31670152, 81802083).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the study: JS H, YH S, ZJ G, and XJ S. Collected and analyzed the data: NL, and LL. Wrote and edited the manuscript: NL, FB, and BF H.

Corresponding author

Correspondence to Bifang Hao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

All authors have seen and agree with the contents of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Huang, J., Liu, L. et al. 18 Additional Amino Acids of the Signal Peptide of the Bombyx mori Nucleopolyhedrovirus GP64 Activates Immunoglobulin Binding Protein (BiP) Expression by RNA-seq Analysis. Curr Microbiol 78, 490–501 (2021). https://doi.org/10.1007/s00284-020-02309-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02309-4

Navigation