Skip to main content
Log in

Thermodynamic properties, mechanical properties and interatomic potential in solids: a Shou-Shi-Ling ( ) game

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Two formulae were developed to express sublimation enthalpy and Young’s modulus on a thermodynamic basis. The first formula reveals how the sublimation enthalpy is correlated with the thermal expansion coefficient and heat capacity of solids, whereas the second formula relates the Young’s modulus with sublimation enthalpy and equilibrium interatomic (intermolecular) distance. While the formulae themselves divulge the physical nature of the macroscopic properties such as sublimation enthalpy, coefficient of thermal expansion and Young’s modulus, these two formulae provide alternative ways to quantitatively estimate thermodynamic or mechanical properties of great importance in the development of new materials. Built upon these formulae, the effective connection among mechanical, thermodynamic properties along with the microscopic feature, the interatomic potential, was found fairly useful in the areas such as medicinal designing, environmental research, evaluation of the contamination in specific, and the development of lithium ion batteries, superconducting and even architectural materials, wherein either thermodynamic or mechanical properties or both are imperative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. According to Moore and Sward, the first known mention of this game was contained in the book Wuzazu by the Chinese Ming-dynasty writer Xie Zhaozhi; he wrote that the game—called shoushiling—had origin back to the time of the Han dynasty (206 BC–220 AD). The game is also mentioned in the book Note of Liuyanzhai by Li Rihua. See Moore, M. E.; Sward, J. “Introduction to the game industry” (2006) Upper Saddle River, NJ: Pearson Prentice Hall. p. 535.

References

  1. Perlovich, G.L., Rodionov, S.V., Bauer-Brandl, A.: Thermodynamics of solubility, sublimation and solvation processes of parabens. Eur. J. Pharm. Sci. 24, 25–33 (2005)

    Article  Google Scholar 

  2. Blokhina, S., Sharapova, A., Ol’khovich, M., Perlovich, G.: Sublimation thermodynamics of four fluoroquinolone antimicrobial compounds. J. Chem. Thermodyn. 105, 37–43 (2017)

    Article  Google Scholar 

  3. Blokhina, S., Sharapova, A., Ol’khovich, M., Ustinov, A., Perlovich, G.: Thermodynamic study of sublimation, solubility and solvation of bioactive derivatives of hydrogenated pyrido[4,3-b]indoles. J. Chem. Thermodyn. 144, 105973 (2020)

    Article  Google Scholar 

  4. Grant, D.J.W., Brittain, H.G.: Solubility in pharmaceutical solids. In: Brittain, H.G. (ed.) Physical Characterization of Pharmaceutical Solids, pp. 321–386. Marcel Dekker Inc, New York (1995)

    Chapter  Google Scholar 

  5. Schwarzenbach, R.P., Gschwend, P.M., Imboden, D.M.: Environmental Organic Chemistry, 1st edn. Wiley, New York (1993)

    Google Scholar 

  6. Pal, A., Chauhan, N.: Interactions of amino acids and peptides with the drug pentoxifylline in aqueous solution at various temperatures: a volumetric approach. J. Chem. Thermodyn. 54, 288–292 (2012)

    Article  Google Scholar 

  7. Della Gatta, G., Usacheva, T., Badea, E., Pałecz, B., Ichim, D.: Thermodynamics of solvation of some small peptides in water at T = 298.15 K. J. Chem. Thermodyn. 38, 1054–1061 (2006)

    Article  Google Scholar 

  8. Charlton, M.H., Docherty, R., Hutchings, M.: Quantitative structure-sublimation enthalpy relationship studied by neural networks, theoretical crystal packing calculations and multilinear regression analysis. J. Chem. Soc. Perkin Trans. 2, 2023–2030 (1995)

    Article  Google Scholar 

  9. De Cock, P., Bechert, C.-L.: Erythritol. Functionality in noncaloric functional beverages. Pure Appl. Chem. 74, 1281–1289 (2002)

    Article  Google Scholar 

  10. Endo, K., Amikawa, S., Matsumoto, A., Sahashi, N., Onoue, S.: Erythritol-based dry powder of glucagon for pulmonary administration. Int. J. Pharm. 290, 63–71 (2005)

    Article  Google Scholar 

  11. Růžička, K., Fulem, M., Růžička, V.: Recommended vapor pressure of solid naphthalene. J. Chem. Eng. Data 50, 1596–1970 (2005)

    Article  Google Scholar 

  12. Růžička, K., Fulem, M., Červinka, C.: Recommended sublimation pressure and enthalpy of benzene. J. Chem. Thermodyn. 68, 40–47 (2014)

    Article  Google Scholar 

  13. Štejfa, V., Fulem, M., Růžička, K., Morávek, P.: New static apparatus for vapor pressure measurements: reconciled thermophysical data for benzophenone. J. Chem. Eng. Data 61, 3627–3639 (2016)

    Article  Google Scholar 

  14. Monte, M.J.S., Notario, R., Pinto, S.P., Lobo Ferreira, A.I.M.C., Ribeiro da Silva, M.D.M.C.: Thermodynamic properties of fluoranthene: an experimental and computational study. J. Chem. Thermodyn. 49, 159–164 (2012)

    Article  Google Scholar 

  15. Monte, M.J.S., Santos, L.M.N.B.F., Fulem, M., Fonseca, J.M.S., Sousa, C.A.D.: New static apparatus and vapor pressure of reference materials: naphthalene. Benzoic acid, benzophenone, and ferrocene. J. Chem. Eng. Data 51, 757–766 (2006)

    Article  Google Scholar 

  16. Monte, M.J.S., Pinto, S.P., Lobo Ferreira, A.I.M.C., Amaral, L.M.P.F., Freitas, V.L.S., Ribeiro da Silva, M.D.M.C.: Fluorene: an extended experimental thermodynamic study. J. Chem. Thermodyn. 45, 53–58 (2012)

    Article  Google Scholar 

  17. Verevkin, S.P.: Phase changes in pure component systems: liquids and gases. In: Weir, R.D., De Loos, W. (eds.) Measurement of the Thermodynamic Properties of Multiple Phases, pp. 6–30. Elsevier, Amsterdam (2005)

    Google Scholar 

  18. Růžička, K., Koutek, B., Fulem, M., Hoskovec, M.: Indirect determination of vapor pressurfes by capillary gas–liquid chromatography: analysis of the reference vapor-pressure data and their treatment. J. Chem. Eng. Data 57, 1349–1368 (2012)

    Article  Google Scholar 

  19. Lopes Jesus, A.J., Tomé, L.I.N., Eusébio, M.E., Redinha, J.S.: Enthalpy of sublimation in the study of the solid state of organic compounds. Application to erythritol and threitol. J. Phys. Chem. B 109, 18055–18060 (2005)

    Article  Google Scholar 

  20. Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Novikov, V.B., Zaitsau, D.H., Verevkin, S.P.: Solution calorimetry as a complementary tool for the determination of enthalpies of vaporization and sublimation of low volatile compounds at 298.15 K. Thermochim. Acta 589, 164–173 (2014)

    Article  Google Scholar 

  21. Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Novikov, V.B., Buzyurov, A.V., Fedorova, Y.V., Mukhametzyanov, T.A.: New method for determination of vaporization and sublimation enthalpy of aromatic compounds at 298.15 K using solution calorimetry technique and group-additivity scheme. Thermochim. Acta 622, 88–96 (2015)

    Article  Google Scholar 

  22. Solomonov, B.N., Varfolomeev, M.A., Nagrimanov, R.N., Varfolomeev, M.A., Buzyurov, A.V., Mukhametzyanov, T.A.: Enthalpies of fusion and enthalpies of solvation of aromatic hydrocarbons derivatives: estimation of sublimation enthalpies at 298.15 K. Thermochim. Acta 629, 77–82 (2016)

    Article  Google Scholar 

  23. Tabernero, A., del Valle, E.M.M., Galán, M.A.: Estimation of sublimation enthalpies of solids constituted by aromatic and/or polycyclic aliphatic rings by using a group contribution method. AlChE J.: Thermodyn. Mol.-sc. Phenom. 58, 2875–2884 (2012)

    Article  Google Scholar 

  24. Bagheria, M., Bagheria, M., Hossein Gandomib, A., Golbraikh, A.: Simple yet accurate prediction method for sublimation enthalpies of organic contaminants using their molecular structure. Thermochim. Acta 543, 96–106 (2012)

    Article  Google Scholar 

  25. Chickos, J.S., Gavezzotti, A.: Sublimation enthalpies of organic compounds: a very large database with a match to crystal structure determinations and a comparison with lattice energies. Cryst. Growth Des. 19, 6566–6576 (2019)

    Article  Google Scholar 

  26. Červinka, C., Fulem, M.: State-of-the-art calculations of sublimation enthalpies for selected molecular crystals and their computational uncertainty. J. Chem. Theor. Comput. 13, 2840–2850 (2017)

    Article  Google Scholar 

  27. McKinley, J., Beran, G.L.: Identitfying pragmatic qusi-harmonic electronic structure approaches for modelling molecular crystal thermal expansion. Faraday Discuss. 211, 181–207 (2018)

    Article  ADS  Google Scholar 

  28. Červinka, C., Beran, G.J.O.: Towards reliable ab initio sublimation pressures for organic molecular crystals—are we there yet? Phys. Chem. Chem. Phys. 21, 14799 (2019)

    Article  Google Scholar 

  29. Zen, A., Brandenburg, J.G., Klimes, J., Tkatchenko, A., Alfè, D., Michaelides, A.: Fast and accurate quantum Monte Carlo for molecular crystals. PNAS 115, 1724–1729 (2018)

    Article  Google Scholar 

  30. Gotcu, P., Pfleging, W., Symrek, P., Seifert, H.J.: Thermal behaviour of \(\text{ LixMeO}_{{2}}\) (\(\text{ Me } = \text{ Co }\) or \(\text{ Ni } + \text{ Mn } + \text{ Co }\)) cathode materials. Phys. Chem. Chem. Phys. 19, 11920–11930 (2017)

    Article  Google Scholar 

  31. Mu, B., Walton, K.S.: Thermal analysis and heat capacity study of metal-organic frameworks. J. Phys. Chem. C. 115, 22748–22754 (2011)

    Article  Google Scholar 

  32. Karl, M., Rantanen, J., Rades, T.: Determining thermal conductivity of small molecule amorphous drugs with modulated differential scanning calorimetry and vacuum molding sample preparation. Pharmaceutics 11(1–7), 670 (2019)

    Article  Google Scholar 

  33. Ren, Y.H., Zhao, F.Q., Yi, J.H., Xu, K.Z., Ma, H.X., Hu, R.Z., Song, J.R.: Studies on an ionic compound \(\text{(3-ATz) }+\) (NTO)\(-\): crystal structure, specific heat capacity, thermal behaviors and thermal safety. J. Iran. Chem. Soc. 9, 407–414 (2012)

    Article  Google Scholar 

  34. Zábranský, M., Kolská, Z., Růžička Jr., V.: Heat capacity of liquids: critical review and recommended values. Supplement II. J. Phys. Chem. Ref. Data 39, 013103-1-013103-404 (2010)

    Article  ADS  Google Scholar 

  35. Wang, Z.Q., Wu, M.S., Lei, X.L., Xu, B., Ouyang, C.Y.: Elastic properties of new solid state electrolyte material Li10GeP2S12: a study from first-principles calculations. Int. J. Electrochem. Sci. 9, 562–568 (2014)

    Google Scholar 

  36. Goodenough, J.B., Kim, Y.: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010)

    Article  Google Scholar 

  37. Kamaya, N., Homma, K., Yamakawa, Y., Hirayama, M., Kanno, R., Yonemura, M., Kamiyama, T., Kato, Y., Hama, S., Kawamoto, K., Mitsui, A.: A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011)

    Article  ADS  Google Scholar 

  38. Zhang, Y., He, X., Chen, Z., Bai, Q., Nolan, A.M., Roberts, C.A., Banerjee, D., Matsunaga, T., Mo, Y., Ling, C.: Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019)

    Article  ADS  Google Scholar 

  39. Peters, F., Langer, F., Hillen, N., Koschek, K., Bardenhagen, I., Schwenzel, J., Busse, M.: Correlation of mechanical and electrical behavior of polyethylene oxide-based solid electrolytes for all-solid state lithium-ion batteries. Batteries 5, 26 (2019)

    Article  Google Scholar 

  40. Ni, J.E., Case, E.D., Sakamoto, J.S., Rangasamy, E., Wolfenstine, J.B.: Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J. Mater. Sci. 47, 7978–7985 (2012)

    Article  ADS  Google Scholar 

  41. Cooper, C., Sutorik, A.C., Wright, J., Luoto III, E.A., Glide, G.: Mechanical properties of hot isostatically pressed Li\(_0.35\)La\(_0.55\)TiO\(_3\). Adv. Eng. Mater. 16, 755–759 (2014)

    Article  Google Scholar 

  42. Jackman, S.D., Cutler, R.A.: Effect of microcracking on ionic conductivity in LATP. J. Power Sour. 218, 65–72 (2012)

    Article  ADS  Google Scholar 

  43. Deng, Z., Wang, Z., Chu, I.K., Ong, S.P.: Elastic properties of alkali superionic conductor electrolytes from first principles calculations. J. Electrochem. Soc. 163, A67–A74 (2016)

    Article  Google Scholar 

  44. Kantharaj, R., Marconnet, A.M.: Heat generation and thermal transport in lithium-ion batteries: a scale-bridging. Nanoscale Microscale Thermophys. Eng. 23, 128–156 (2019)

    Article  ADS  Google Scholar 

  45. Hubaud, A.A., Schroeder, D.J., Ingram, B.J., Okasinski, J.S., Vaughey, J.T.: Thermal expansion in the Garnet-type solid electrolyte (\(\text{ Li}_{{7}}-\text{ xAl}_{\rm x/3})\)\(\text{ La}_{{3}}\text{ Zr}_{{2}}\text{ O}_{{12}}\) as a function of Al content. J. Alloys Compd. 644, 804–807 (2015)

    Article  Google Scholar 

  46. Wu, M., Xu, B., Lei, X., Huang, K., Ouyang, C.: Bulk properties and transport mechanisms of a solid state antiperovskite Li-Ion conductor Li3OCl: insights from first principles calculations. J. Mater. Chem. A 6, 1150–1160 (2018)

    Article  Google Scholar 

  47. Sadovnikov, S.I., Gusev, A.I., Chukin, A.V., Rempel, A.A.: High-temperature X-ray diffraction and thermal expansion of nanocrystalline and coarse-crystalline acanthite \(\alpha \)-\(\text{ Ag}_{{2}}\text{ S }\) and argentite \(\beta \)-\(\text{ Ag}_{{2}}\text{ S }\). Phys. Chem. Chem. Phys. 18, 4617–4626 (2016)

    Article  Google Scholar 

  48. Thleme, C., Göris, H., Rüssel, C.: \(\text{ Ba1 }-\text{ xSrxZn}_{{2}}\text{ Si}_{{2}}\text{ O}_{{7}}\)—A new family of materials with negative and very high thermal expansion. Sci. Rep. 5(1–7), 18040 (2015)

    ADS  Google Scholar 

  49. Corsepius, N.C., DeVore, T.C., Reianer, B.A., Warnaar, D.L.: Using variable temperature powder X-ray diffraction to determine the thermal expansion coefficient of solid MgO. J. Chem. Educ. 84(5), 816 (2007)

    Article  Google Scholar 

  50. Grzechnik, A., Krüger, H., Kahlenberg, V., Friese, K.: Thermal expansion of \(\text{ Li}_{{3}}\text{ Na}_{{3}}\text{ In}_{{2}}\text{ F}_{{12}}\) Garnet. J. Phys.: Condens. Matter 18, 8925–8934 (2006)

    ADS  Google Scholar 

  51. Likhacheva, A.Y., Rashchenko, S.V., Chanyshev, A.D., Inerbaev, T.M., Litasov, K.D., Kilin, D.S.: Thermal equation of state of solid naphthalene to 13 GPa and 773 K: in situ X-ray diffraction study and first principles calculations. J. Chem. Phys. 140, 164508 (2014)

    Article  ADS  Google Scholar 

  52. Scherb, S., Hinaut, A., Pawlak, R., Vilhena, J.G., Liu, Y., Freund, S., Liu, Z., Feng, X., Müllen, K., Glatzel, T., Narita, A., Meyer, E.: Giant thermal expansion of a two-dimensional supramolecular network triggered by alkyl chain motion. Commun. Mater. 1(1–7), 8 (2020)

    Article  Google Scholar 

  53. Benassi, E.: The zero point position in Morse’s potential and accurate prediction of thermal expansion in metals. Chem. Phys. 515, 323–335 (2018)

    Article  Google Scholar 

  54. Born, M., Mayer, J.E.: Zur Gittertheorie der Ionenkristalle. Zeitschrift für Physik 75, 1–18 (1932)

    Article  ADS  MATH  Google Scholar 

  55. Morse, PhM: Diatomic molecules according to the wave mechanics. II. Vibrational levels. Phys. Rev. B. 34, 57–65 (1929)

    Article  ADS  MATH  Google Scholar 

  56. Lennard-Jones, J.E.: On the determination of molecular fields. Proc. R. Soc. Lond. A 106, 463–477 (1926)

    Google Scholar 

  57. Lennard-Jones, J.E.: The equation of state of gases and critical phenomena. Physica 4, 941–956 (1937)

    Article  ADS  Google Scholar 

  58. Rumble, J.R. (ed.): CRC Handbook of Chemistry and Physics, 100th edn. CRC Press, Taylor & Francis Group, Boca Raton (2020)

  59. Touloukian, Y.S., Kirby, R.K., Taylor, R.E., Desai, P.D.: Thermal Expansion. Metallic Elements and Alloys. Springer, Amsterdam (1975)

    Google Scholar 

  60. Gould, R.F. (ed.): Thermodynamic Properties of the Elements. American Chemical Society, Washington (1956)

  61. Bridgman, P.W.: The effect of tension on the electrical resistance of certain abnormal metals. Proc. AAAS 57, 39–66 (1922)

    Google Scholar 

  62. Gould, R.F. (ed.): Thermodynamic Properties of the Elements. American Chemical Society, Washington (1956)

  63. Slotwinski, T., Trivisonno, J.: Temperature dependence of the elastic constants of single crystal lithium. J. Phys. Chem. Solids 30, 1276–1278 (1969)

    Article  ADS  Google Scholar 

  64. Masias, A., Felten, N., Garcia-Mendez, R., Wolfenstine, J., Sakamoto, J.: Elastic, plastic, and creep mechanical properties of lithium metal. J. Mater. Sci. 54, 2585–2600 (2019)

    Article  ADS  Google Scholar 

  65. Ma, H.-X., Song, J.-R., Zhao, F.-Q., Gao, H.-X., Hu, R.-Z.: Crystal structure, safety performance and density-functional theoretical investigation of 2,6-diamino-3,5-dinitropyrazine-1-oxide (LLM-105). Chin. J. Chem. 26, 1997–2002 (2008)

    Article  Google Scholar 

  66. Manaa, M.R., Kuo, I.-F.W., Fried, L.E.: First-principles high-pressure unreacted equation of state and heat of formation of crystal 2,6-diamina-3,5-dinitropyrazine (LLM-105). J. Chem. Phys. 141, 064702 (2014)

    Article  ADS  Google Scholar 

  67. Alimi, L.O., Lama, P., Smith, V.J., Barbour, L.J.: Large volumetric thermal expansion of a novel organic cocrystal over a wide temperature range. CrystEngComm 20, 631–635 (2018)

    Article  Google Scholar 

  68. Bondi, A.: Thermal properties of molecular crystals. I heat capacity and thermal expansion. J. Appl. Phys. 37, 4643 (1966)

    Article  ADS  Google Scholar 

  69. Stephenson, R.M., Stanislaw, M.: Handbook of the Thermodynamics of Organic Compounds. Elsvier, Amsterdam (1987)

    Book  Google Scholar 

  70. Regnier, J.: Tension de Vapeur de L’Ethane Entre 80 et 135 K. J. Chim. Phys. 69, 942–944 (1972)

    Article  Google Scholar 

  71. Bickerton, J., Piedade, M.E.M.D., Pilcher, G.: Enthalpy of formation of tetrabromomethane by rotating-bomb calorimetry. J. Chem. Thermodyn. 16, 661–668 (1984)

    Article  Google Scholar 

  72. Wren, D.J., Vikis, A.C.: Vapour pressure of CH3I in the temperature range 176 to 227 K. J. Chem. Thermodyn. 14, 435–437 (1982)

    Article  Google Scholar 

  73. Kruif, C.G.: Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons. J. Chem. Thermodyn. 12, 243–248 (1980)

    Article  Google Scholar 

  74. Nishida, K., Ishihara, E., Osaka, T., Koukitu, M.: Vapour pressures and heats of sublimation of some disperse dyes. J. Food Sci. 93, 52–54 (2008)

    Google Scholar 

  75. Torres-Gomez, L.A., Barreiro-Rodriguez, G., Galarza-Mondragon, A.: A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry. Thermochim. Acta 124, 229–233 (1988)

    Article  Google Scholar 

  76. Roux, M.V., Temprado, M., Chickos, J.S., Nagano, Y.: Critically evaluated thermochemical properties of polycyclic aromatic hydrocarbons. J. Phys. Chem. Ref. Data 37, 1855–1996 (2008)

    Article  ADS  Google Scholar 

  77. Nass, K., Lenoir, D., Kettrup, A.: Calculation of the thermodynamic properties of polycyclic aromatic hydrocarbons by an incremental procedure. Angew. Chem. Int. Ed. Engl. 34, 1735–1736 (1995)

    Article  Google Scholar 

  78. Chirico, R.D., Knipmeyer, S.E., Nguyen, A., Steele, W.V.: The thermodynamic properties of biphenyl. J. Chem. Thermodyn. 21, 1307–1331 (1989)

    Article  Google Scholar 

  79. da Ribeiro, S., Manuel, A.V., Santos, L.M.N.B.F., Lima, L.M.S.S.: Standard molar enthalpies of formation and of sublimation of the terphenyl isomers. J. Chem. Thermodyn. 40, 375–385 (2008)

    Article  Google Scholar 

  80. Gavezzotti, A.: Molecular aggregation: structure analysis and molecular simulation of crystal and liquids. Oxford (2013)

  81. Coolidge, A.S., Coolidge, M.S.: The sublimation pressures of substituted quinones and hydroquinones. J. Am. Chem. Soc. 49, 100–104 (1927)

    Article  Google Scholar 

  82. Hohlein, S., Konig-Haagen, A., Bruggemann, D.: Thermophysical characterization of MgCl\(_26\).H\(_2\)O, Xylitol and erythritol as phase change materials (PCM) for latent heat thermal energy storage (LHTES). Materials 10, 444 (2017)

    Google Scholar 

  83. Tong, B., Tan, Z.-C., Shi, Q., Li, Y.-S., Yue, D.-T., Wang, S.-X.: Thermodynamic investigation of several natural polyols (I): heat capacities and thermodynamic properties of xylitol. Thermochim. Acta 457, 20–26 (2007)

    Article  Google Scholar 

  84. Smith, N.K., Gorin, G., Good, W.D., McCullough, J.P.: The heats of combustion, sublimation, and formation of four dihalobiphenyls. J. Phys. Chem. 68, 940–946 (1964)

    Article  Google Scholar 

  85. Van der Linde, P.R., Van Miltenburg, C., Van den Berg, G.J.K., Oonk, H.A.: Low temperature heat capacities and derived thermodynamic functions of 1,4-dichlorobenzene, 1,4-dibromobenzene, 1,3,5-trichlorobenzene, and 1,3,5-tribromobenzene. J. Chem. Eng. Data 50, 164–172 (2005)

    Article  Google Scholar 

  86. Ribeiro da Silva, M.A.V., Monte, M.J.S., Ribeiro, J.R.: Vapor pressures and the enthalpies of sublimation of five dicarboxylic acids. J. Chem. Thermodyn. 31, 1093–1107 (1999)

    Article  Google Scholar 

  87. Prazyan, T.L., Zhuravlev, YuN: Ab initio study of naphthalene and anthracene elastic properties. Int. J. Mod. Phys. 29(1–13), 1850024 (2018). (naphthalene and anthracene)

    Article  ADS  Google Scholar 

  88. Oja, V., Chen, X., Hajaligol, M.R., Chan, W.G.: Sublimation thermodynamic parameters for cholesterol, ergosterol, -sitosterol, and stigmasterol. J. Chem. Eng. Data 54, 730–734 (2009)

    Article  Google Scholar 

  89. Pascazio, L., Martin, J.W., Botero, M.L., Sirignan, M., D’Anna, A., Kraft, M.: Mechanical properties of soot particles: the impact of crosslinked polycyclic aromatic hydrocarbons. Comb. Sci. Technol. 1–19 (2019). https://doi.org/10.1080/00102202.2019.1668380

  90. Siddiqi, M.A., Siddiqui, R.A., Atakan, B.: Thermal stability, sublimation pressures, and diffusion coefficients of anthracene, pyrene, and some metal-diketonates. J. Chem. Eng. Data 10, 2795–2802 (2009)

    Article  Google Scholar 

  91. Torres, L.A., Campos, M., Martínez, M., Rojas, A.: The thermochemistry of coronene revisited. J. Chem. Thermodyn. 41, 957–965 (2009)

    Article  Google Scholar 

  92. Inokuchi, H., Shiba, S., Handa, T., Akamatu, H.: Heats of sublimation of condensed polynuclear aromatic hydrocarbons. Bull. Chem. Soc. Jpn. 25, 299–302 (1952)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms Meruyert Mukhitkyzy for her helpful bibliographic research. EB thanks the Fund from Bingtuan Oasis at Shihezi University (Xinjiang, China). HF thanks Nazarbayev University small Grant 110119FD4542.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Benassi.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benassi, E., Fan, H. Thermodynamic properties, mechanical properties and interatomic potential in solids: a Shou-Shi-Ling ( ) game. Continuum Mech. Thermodyn. 33, 639–652 (2021). https://doi.org/10.1007/s00161-020-00935-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00935-8

Keywords

Navigation