Skip to main content
Log in

Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The Karush–Kuhn–Tucker and value function (lower-level value function, to be precise) reformulations are the most common single-level transformations of the bilevel optimization problem. So far, these reformulations have either been studied independently or as a joint optimization problem in an attempt to take advantage of the best properties from each model. To the best of our knowledge, these reformulations have not yet been compared in the existing literature. This paper is a first attempt towards establishing whether one of these reformulations is best at solving a given class of the optimistic bilevel optimization problem. We design a comparison framework, which seems fair, considering the theoretical properties of these reformulations. This work reveals that although none of the models seems to particularly dominate the other from the theoretical point of view, the value function reformulation seems to numerically outperform the Karush–Kuhn–Tucker reformulation on a Newton-type algorithm. The computational experiments here are mostly based on test problems from the Bilevel Optimization LIBrary (BOLIB).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bard, J.F.: Some properties of the bilevel programming problem. J. Optim. Theory Appl. 68(2), 371–378 (1991)

    Article  MathSciNet  Google Scholar 

  2. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, New York (1998)

    Book  Google Scholar 

  3. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, Berlin (2000)

    Book  Google Scholar 

  4. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)

    MATH  Google Scholar 

  5. De Luca, T., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Program. 75(3), 407–439 (1996)

    Article  MathSciNet  Google Scholar 

  6. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academic Publishers, New York (2002)

    MATH  Google Scholar 

  7. Dempe, S., Dutta, J.: Is bilevel programming a special case of mathematical programming with equilibrium constraints? Math. Program. 131(1–2), 37–48 (2012)

    Article  MathSciNet  Google Scholar 

  8. Dempe, S., Dutta, J., Mordukhovich, B.S.: New necessary optimality conditions in optimistic bilevel programming. Optimization 56(5–6), 577–604 (2007)

    Article  MathSciNet  Google Scholar 

  9. Dempe, S., Franke, S.: On the solution of convex bilevel optimization problems. Comput. Optim. Appl. 63(3), 685–703 (2016)

    Article  MathSciNet  Google Scholar 

  10. Dempe, S., Franke, S.: Solution algorithm for an optimistic linear Stackelberg problem. Comput. Oper. Res. 41, 277–281 (2014)

    Article  MathSciNet  Google Scholar 

  11. Dempe, S., Franke, S.: Solution of bilevel optimization problems using the KKT approach. Optimization 68(8), 1471–1489 (2019)

    Article  MathSciNet  Google Scholar 

  12. Dempe, S., Zemkoho, A.B.: On the Karush-Kuhn-Tucker reformulation of the bilevel optimization problem. Nonlinear Anal.: Theory, Methods Appl. 75, 1202–1218 (2012)

    Article  MathSciNet  Google Scholar 

  13. Dempe, S., Zemkoho, A.B.: The generalized Mangasarian–Fromowitz constraint qualification and optimality conditions for bilevel programs. J. Optim. Theory Appl. 148, 433–441 (2011)

    Article  MathSciNet  Google Scholar 

  14. Fiacco, A.V.: Introduction to Sensitivity and Stability Analysis in Nonlinear programming. Academic Press, USA (1983)

    MATH  Google Scholar 

  15. Fischer, A.: A special Newton-type optimization method. Optimization 24(3–4), 269–284 (1992)

    Article  MathSciNet  Google Scholar 

  16. Fischer, A., Zemkoho, A.B., Zhou, S.L.: Semismooth Newton-type method for bilevel optimization: Global convergence and extensive numerical experiments, arXiv:1912.07079 (2019)

  17. Fischer, A., Zemkoho, A.B., Zhou, S.L.: Detailed numerical experiment for “Semismooth newton-type method for bilevel optimization: Global convergence and extensive numerical experiments”, Technical Report, School of Mathematics, University of Southampton, UK (2019)

  18. Flegel, M.L., Kanzow, C., Outrata, J.V.: Optimality conditions for disjunctive programs with application to mathematical programs with equilibrium constraints. Set-Valued Anal. 15(2), 139–162 (2007)

    Article  MathSciNet  Google Scholar 

  19. Gauvin, J., Dubeau, F.: Differential properties of the marginal function in mathematical programming. Math. Program. Study 18, 101–119 (1982)

    Article  MathSciNet  Google Scholar 

  20. Henrion, R., Surowiec, T.: On calmness conditions in convex bilevel programming. Appl. Anal. 90(6), 951–970 (2011)

    Article  MathSciNet  Google Scholar 

  21. Jongen, H.T., Rückmann, J.J., Stein, O.: Generalized semi-infinite optimization: A first order optimality condition and examples. Math. Program. 83(1–3), 145–58 (1998)

    MathSciNet  MATH  Google Scholar 

  22. Lampariello, L., Sagratella, S.: A bridge between bilevel programs and Nash games. J. Optim. Theory Appl. 174(2), 613–635 (2017)

    Article  MathSciNet  Google Scholar 

  23. Lampariello, L., Sagratella, S.: Numerically tractable optimistic bilevel problems. Comput. Optim. Appl. 76, 277–303 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lin, G.H., Xu, M., Ye, J.J.: On solving simple bilevel programs with a nonconvex lower level program. Math. Program. 144(1–2), 277–305 (2014)

    Article  MathSciNet  Google Scholar 

  25. Mehlitz, P., Wachsmuth, G.: Weak and strong stationarity in generalized bilevel programming and bilevel optimal control. Optimization 65, 907–935 (2016)

    Article  MathSciNet  Google Scholar 

  26. Mehlitz, P., Minchenko, L.I., Zemkoho, A.B. : A note on partial calmness for bilevel optimization problems with linear structures at the lower level, arXiv:2003.06138 (2020)

  27. Mehlitz, P., Zemkoho, A.B.: Sufficient optimality conditions in bilevel programming, arXiv:1911.01647 (2019)

  28. Mersha, A.G., Dempe, S.: Feasible direction method for bilevel programming problem. Optimization 61(5), 597–616 (2012)

    Article  MathSciNet  Google Scholar 

  29. Mifflin, R.: Semismooth and semiconvex functions in constrained optimization. SIAM J. Control Optim. 15(6), 959–972 (1977)

    Article  MathSciNet  Google Scholar 

  30. Mordukhovich, B.S.: Variational Analysis and Applications. Springer, Berlin (2018)

    Book  Google Scholar 

  31. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations. Math. Oper. Res. 18(1), 227–244 (1993)

    Article  MathSciNet  Google Scholar 

  32. Qi, L., Jiang, H.: Semismooth Karush–Kuhn–Tucker equations and convergence analysis of Newton and quasi-Newton methods for solving these equations. Math. Oper. Res. 22(2), 301–325 (1997)

    Article  MathSciNet  Google Scholar 

  33. Qi, L., Sun, D.: A survey of some nonsmooth equations and smoothing Newton methods, In: Eberhard, A., Glover, B., Hill, R., Ralph, D. (eds.) Progress in Optimization, pp. 121–146. Springer, Boston, MA (1999)

  34. Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Math. Programm. 58, 353–367 (1993)

    Article  MathSciNet  Google Scholar 

  35. Rockafellar, R.T.: Convex Analysis. Princeton University Press, USA (1970)

    Book  Google Scholar 

  36. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Berlin (2009)

    MATH  Google Scholar 

  37. Sahin, K.H., Ciric, A.R.: A dual temperature simulated annealing approach for solving bilevel programming problems. Comput. Chem. Eng. 23(1), 11–25 (1998)

    Article  Google Scholar 

  38. Xu, M., Ye, J.J.: A smoothing augmented Lagrangian method for solving simple bilevel programs. Comput. Optim. Appl. 59(1–2), 353–377 (2014)

    Article  MathSciNet  Google Scholar 

  39. Xu, M., Ye, J.J., Zhang, L.: Smoothing SQP methods for solving degenerate nonsmooth constrained optimization problems with applications to bilevel programs. SIAM J. Optim. 25(3), 1388–1410 (2015)

    Article  MathSciNet  Google Scholar 

  40. Ye, J.Y.: Necessary and sufficient optimality conditions for mathematical programs with equilibrium constraints. J. Math. Anal. Appl. 307(1), 350–369 (2005)

    Article  MathSciNet  Google Scholar 

  41. Ye, J.J., Zhu, D.: New necessary optimality conditions for bilevel programs by combining the MPEC and value function approaches. SIAM J. Optim. 20(4), 1885–1905 (2010)

    Article  MathSciNet  Google Scholar 

  42. Ye, J.J., Zhu, D.L.: Optimality conditions for bilevel programming problems. Optimization 33, 9–27 (1995). (with Erratum in Optimization 39:361–366, 1997)

    Article  MathSciNet  Google Scholar 

  43. Ye, J.J., Zhu, D.L., Zhu, Q.J.: Exact penalization and necessary optimality conditions for generalized bilevel programming problems. SIAM J. Optim. 7(2), 481–507 (1997)

    Article  MathSciNet  Google Scholar 

  44. Zemkoho, A.B.: Bilevel Programming: Reformulations, Regularity, and Stationarity. Technical University Bergakademie Freiberg, Germany (2012). PhD thesis

    Google Scholar 

  45. Zhou, S.L., Zemkoho, A.B., Tin, A.: BOLIB: bilevel optimization LIBrary of test problems. In: Dempe, S., Zemkoho, A.B. (eds.) Bilevel Optimization: Advances and Next Challenges. Springer, Berlin (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the two anonymous referees for their constructive remarks that have helped us to improve the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglong Zhou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was funded by the EPSRC Grant EP/P022553/1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zemkoho, A.B., Zhou, S. Theoretical and numerical comparison of the Karush–Kuhn–Tucker and value function reformulations in bilevel optimization. Comput Optim Appl 78, 625–674 (2021). https://doi.org/10.1007/s10589-020-00250-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-020-00250-7

Keywords

Navigation