Skip to main content

Advertisement

Log in

Stem cell-based models and therapies: a key approach into schizophrenia treatment

  • Mini Review
  • Published:
Cell and Tissue Banking Aims and scope Submit manuscript

Abstract

Psychiatric disorders such as schizophrenia can generate distress and disability along with heavy costs on individuals and health care systems. Different genetic and environmental factors play a pivotal role in the appearance of the mentioned disorders. Since the conventional treatment options for psychiatric disorders are suboptimal, investigators are trying to find novel strategies. Herein, stem cell therapies have been recommended as novel choices. In this context, the preclinical examination of stem cell-based therapies specifically using appropriate models can facilitate passing strong filters and serious examination to ensure proper quality and safety of them as a novel treatment approach. Animal models cannot be adequately helpful to follow pathophysiological features. Nowadays, stem cell-based models, particularly induced pluripotent stem cells reflected as suitable alternative models in this field. Accordingly, the importance of stem cell-based models, especially to experiment with the regenerative medicine outcomes for schizophrenia as one of the severe typing of psychiatric disorders, is addressed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADHD:

Attention-deficit/hyperactivity disorder

ASD:

Autism spectrum disorder

AMSCs:

Adipose- derived mesenchymal stem cells

CBT:

Cognitive behavior therapy

M-5:

Diagnostic and statistical manual of mental disorders, 5th edition

DA:

Dopamine

GABA:

Gamma-aminobutyric acid

COMT:

Catechol-O-methyltransferase

NMDA:

N-methyl-D-aspartate

PV:

Parvalbumin

DISC1:

Disrupted-in-schizophrenia 1

NRG1:

Neuregulin 1

MAM:

Methylazoxymethanol

iPSCs:

Induced pluripotent stem cells

ZFNs:

Zinc-finger nucleases

TALENs:

Transcription activator-like effector nucleases

CRISPR:

Clustered regularly interspaced short palindromic repeats

RNA-Seq:

RNA-sequencing

lncRNAs:

Long non-coding RNAs

del:

Deletions

CYFIP1:

Cytoplasmic FMR1 Interacting protein 1

SST:

Somatostatin

Ccnd2:

Cyclin D2

hUC-MSCs:

Human umbilical cord mesenchymal stem cells

References

  • Abi-Dargham A (2020) From “bedside” to “bench” and back: a translational approach to studying dopamine dysfunction in schizophrenia. Neurosci Biobehav Rev 110:174–179

    CAS  PubMed  Google Scholar 

  • Aghayan H-R, Goodarzi P, Arjmand B (2014) GMP-compliant human adipose tissue-derived mesenchymal stem cells for cellular therapy. Stem cells and good manufacturing practices. Springer, Berlin, pp 93–107

    Google Scholar 

  • Anderson HD, Pace WD, Libby AM, West DR, Valuck RJ (2012) Rates of 5 common antidepressant side effects among new adult and adolescent cases of depression: a retrospective US claims study. Clin Ther 34(1):113–123

    CAS  PubMed  Google Scholar 

  • Ardhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM (2017) Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat Rev Neurol 13(5):265–278

    PubMed  PubMed Central  Google Scholar 

  • Arguello PA, Markx S, Gogos JA, Karayiorgou M (2010) Development of animal models for schizophrenia. Dis Models Mech 3(1–2):22–26

    CAS  Google Scholar 

  • Arjmand B, Goodarzi P, Aghayan H, Payab M, Rahim F, Alavi-Moghadam S, Mohamadi-Jahani F, Larijani B (2019) Co-transplantation of human fetal mesenchymal and hematopoietic stem cells in type 1 diabetic mice model. Front Endocrinol 10:761

    Google Scholar 

  • Arjmand B, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Gilany K, Mehrdad N, Larijani B (2020) Prospect of stem cell therapy and regenerative medicine in osteoporosis. Front Endocrinol 11:430

    Google Scholar 

  • Atala A, Lanza R, Mikos T, Nerem R (2018) Principles of regenerative medicine. Academic Press, Cambridge

    Google Scholar 

  • Baldwin TR (2011) Evidence-based guidelines for the pharmacological treatment of schizophrenia. J Psychopharmacol 19(6):567–596

    Google Scholar 

  • Bangalore NG, Varambally S (2012) Yoga therapy for Schizophrenia. Int J Yoga 5(2):85–91

    PubMed  PubMed Central  Google Scholar 

  • Baradaran-Rafii A, Sarvari M, Alavi-Moghadam S, Payab M, Goodarzi P, Aghayan HR, Larijani B, Rezaei-Tavirani M, Biglar M, Arjmand B (2020) Cell-based approaches towards treating age-related macular degeneration. Cell Tissue Bank 21:1–9

    Google Scholar 

  • Begemann MJH, Thompson IA, Veling W, Gangadin SS, Geraets CNW, van Hag E, Müller-Kuperus SJ, Oomen PP, Voppel AE, van der Gaag M, Kikkert MJ, Van Os J, Smit HFE, Knegtering RH, Wiersma S, Stouten LH, Gijsman HJ, Wunderink L, Staring ABP, Veerman SRT, Mahabir AGS, Kurkamp J, Pijnenborg GHM, Veen ND, Marcelis M, Grootens KP, Faber G, van Beveren NJ, Been A, van den Brink T, Bak M, van Amelsvoort TAMJ, Ruissen A, Blanke C, Groen K, de Haan L, Sommer IEC (2020) To continue or not to continue? Antipsychotic medication maintenance versus dose-reduction/discontinuation in first episode psychosis: HAMLETT, a pragmatic multicenter single-blind randomized controlled trial. Trials 21(1):147

    PubMed  PubMed Central  Google Scholar 

  • Bender L (1953) Childhood schizophrenia. Psychiatr Q 27:663–681

    CAS  PubMed  Google Scholar 

  • Benninghoff J (2009) Stem cell approaches in psychiatry-challenges and opportunities. Dialogues Clin Neurosci 11(4):397

    PubMed  PubMed Central  Google Scholar 

  • Beratis S, Gabriel J, Hoidas S (1994) Age at onset in subtypes of schizophrenic disorders. Schizophr Bull 20(2):287–296

    CAS  PubMed  Google Scholar 

  • Bhati MT (2013) Defining psychosis: the evolution of DSM-5 schizophrenia spectrum disorders. Curr Psychiatry Rep 15(11):409

    PubMed  Google Scholar 

  • Bitanihirwe BK, Woo T-UW (2011) Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev 35(3):878–893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boskovic M, Vovk T, Kores Plesnicar B, Grabnar I (2011) Oxidative stress in schizophrenia. Curr Neuropharmacol 9(2):301–312

    CAS  PubMed  PubMed Central  Google Scholar 

  • Celine TM, Antony J (2014) A study on mental disorders: 5-year retrospective study. J Fam Med Prim Care 3(1):12

    Google Scholar 

  • Chakrabarti A, Bagnall AM, Chue P, Fenton M, Palanisamy V, Wong W, Xia J (2007) Loxapine for schizophrenia. Cochrane Database Syst Rev 4

  • Chandrasena R (1986) Catatonic schizophrenia: an international comparative study. Can J Psychiatry 31(3):249–252

    CAS  PubMed  Google Scholar 

  • Chapter W (2001) 2: burden of mental and behavioural disorders. The World Health Report. Mental Health: New Understanding New Hope

  • Chesney E, Goodwin GM, Fazel S (2014) Risks of all-cause and suicide mortality in mental disorders: a meta-review. World Psychiatry 13(2):153–160

    PubMed  PubMed Central  Google Scholar 

  • Chiu C-T, Wang Z, Hunsberger JG, Chuang D-M (2013) Therapeutic potential of mood stabilizers lithium and valproic acid: beyond bipolar disorder. Pharmacol Rev 65(1):105–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christian KM, Song H, Ming G (2013) 9| application of stem cells to understanding psychiatric disorders. Neurobiol Ment Illn 123

  • Chun S, Westmoreland JJ, Bayazitov IT, Eddins D, Pani AK, Smeyne RJ, Yu J, Blundon JA, Zakharenko SS (2014) Specific disruption of thalamic inputs to the auditory cortex in schizophrenia models. Science 344(6188):1178–1182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chuye LB, Dimitri A, Desai A, Handelmann C, Bae Y, Johari P, Jornet JM, Klejbor I, Stachowiak MK, Stachowiak EK (2018) Brain organoids: expanding our understanding of human development and disease. Results Probl Cell Differ 66:183–206

    CAS  PubMed  Google Scholar 

  • Colpo GD, Ascoli BM, Wollenhaupt-Aguiar B, Pfaffenseller B, Silva EG, Cirne-Lima EO, Quevedo J, Kapczinski F, Rosa AR (2015) Mesenchymal stem cells for the treatment of neurodegenerative and psychiatric disorders. An Acad Bras Ciênc 87(2):1435–1449

    CAS  PubMed  Google Scholar 

  • Danielyan L, Schäfer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, Lourhmati A, Klopfer T, Schaumann F, Schmid B (2011) Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res 14(1):3–16

    CAS  PubMed  Google Scholar 

  • Das D, Feuer K, Wahbeh M, Avramopoulos D (2020) Modeling psychiatric disorder biology with stem cells. Curr Psychiatry Rep 22(5):24

    PubMed  PubMed Central  Google Scholar 

  • Dollfus S, Buijsrogge JA, Benali K, Delamillieure P, Brazo P (2002) Sinistrality in subtypes of schizophrenia. Eur Psychiatry 17(5):272–277

    PubMed  Google Scholar 

  • Donegan JJ, Lodge DJ (2017) Cell-based therapies for the treatment of schizophrenia. Brain Res 1655:262–269

    CAS  PubMed  Google Scholar 

  • Donegan JJ, Lodge DJ (2020) Stem cells for improving the treatment of neurodevelopmental disorders. Stem Cells Dev. https://doi.org/10.1089/scd.2019.0265

    Article  PubMed  Google Scholar 

  • Donegan JJ, Tyson JA, Branch SY, Beckstead MJ, Anderson SA, Lodge DJ (2017) Stem cell-derived interneuron transplants as a treatment for schizophrenia: preclinical validation in a rodent model. Mol Psychiatry 22(10):1492–1501

    CAS  PubMed  Google Scholar 

  • Dzobo K, Thomford NE, Senthebane DA, Shipanga H, Rowe A, Dandara C, Pillay M, Motaung KSCM (2018) Advances in regenerative medicine and tissue engineering: innovation and transformation of medicine. Stem Cells Int 2018:2495848. https://doi.org/10.1155/2018/2495848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebert AD, Liang P, Wu JC (2012) Induced pluripotent stem cells as a disease modeling and drug screening platform. J Cardiovasc Pharmacol 60(4):408

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ertugrul A, Meltzer HY (2003) Antipsychotic drugs in bipolar disorder. Int J Neuropsychopharmacol 6(3):277–284

    CAS  PubMed  Google Scholar 

  • Evans JD, Heaton RK, Paulsen JS, McAdams LA, Heaton SC, Jeste DV (1999) Schizoaffective disorder: a form of schizophrenia or affective disorder? J Clin Psychiatry 60(12):874–882. https://doi.org/10.4088/JCP.v60n1211

    Article  CAS  PubMed  Google Scholar 

  • Falk A, Heine VM, Harwood AJ, Sullivan PF, Peitz M, Brüstle O, Shen S, Sun Y-M, Glover J, Posthuma D (2016) Modeling psychiatric disorders: from genomic findings to cellular phenotypes. Mol Psychiatry 21(9):1167–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer BA, Buchanan RW (2013) Schizophrenia in adults: epidemiology and pathogenesis. U: UpToDate, Post TW ur. UpToDate [Internet]. Waltham, MA: UpToDate

  • Freeman MP, Stoll AL (1998) Mood stabilizer combinations: a review of safety and efficacy. Am J Psychiatry 155(1):12–21

    CAS  PubMed  Google Scholar 

  • Ganguly P, Soliman A, Moustafa AA (2018) Holistic management of schizophrenia symptoms using pharmacological and non-pharmacological treatment. Front Public Health 6:166

    PubMed  PubMed Central  Google Scholar 

  • Gilani AI, Chohan MO, Inan M, Schobel SA, Chaudhury NH, Paskewitz S, Chuhma N, Glickstein S, Merker RJ, Xu Q, Small SA, Anderson SA, Ross ME, Moore H (2014) Interneuron precursor transplants in adult hippocampus reverse psychosis-relevant features in a mouse model of hippocampal disinhibition. Proc Natl Acad Sci USA 111(20):7450–7455

    CAS  PubMed  Google Scholar 

  • Goldberg DP, Huxley P (1992) Common mental disorders: a bio-social model. Tavistock, Routledge

    Google Scholar 

  • Goldring Chris E P, Duffy Paul A, Benvenisty N, Peter W, Andrews U, Ben-David R, Eakins N French, Hanley Neil A, Kelly L, Kitteringham Neil R, Kurth J, Ladenheim D, Laverty H, McBlane J, Narayanan G, Patel S, Reinhardt J, Rossi A, Sharpe M, Park BK (2011) Assessing the safety of stem cell therapeutics. Cell Stem Cell 8(6):618–628

    CAS  PubMed  Google Scholar 

  • Goodarzi P, Aghayan HR, Soleimani M, Norouzi-Javidan A, Mohamadi-Jahani F, Jahangiri S, Emami-Razavi SM, Larijani B, Arjmand B (2014) Stem cell therapy for treatment of epilepsy. Acta Med Iranica, pp 651–655

  • Goodarzi P, Aghayan HR, Larijani B, Soleimani M, Dehpour A-R, Sahebjam M, Ghaderi F, Arjmand B (2015) Stem cell-based approach for the treatment of Parkinson’s disease. Med J Islam Repub Iran 29:168

    PubMed  PubMed Central  Google Scholar 

  • Goodarzi P, Alavi-Moghadam S, Sarvari M, Beik AT, Falahzadeh K, Aghayan H, Payab M, Larijani B, Gilany K, Rahim F (2018a) Adipose tissue-derived stromal cells for wound healing. Cell biology and translational medicine, vol 4. Springer, Berlin, pp 133–149

    Google Scholar 

  • Goodarzi P, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Mohamadi-Jahani F, Ranjbaran N, Payab M, Falahzadeh K, Mousavi M, Arjmand B (2018b) Mesenchymal stem cells-derived exosomes for wound regeneration. Cell biology and translational medicine, vol 4. Springer, Berlin, pp 119–131

    Google Scholar 

  • Goodarzi P, Aghayan HR, Payab M, Larijani B, Alavi-Moghadam S, Sarvari M, Adibi H, Khatami F, Heravani NF, Hadavandkhani M (2019a) Human fetal skin fibroblast isolation and expansion for clinical application. Epidermal cells. Springer, Berlin, pp 261–273

    Google Scholar 

  • Goodarzi P, Falahzadeh K, Aghayan H, Payab M, Larijani B, Alavi-Moghadam S, Tayanloo-Beik A, Adibi H, Gilany K, Arjmand B (2019b) Therapeutic abortion and ectopic pregnancy: alternative sources for fetal stem cell research and therapy in Iran as an Islamic country. Cell Tissue Bank 20(1):11–24

    PubMed  Google Scholar 

  • Goodarzi P, Payab M, Alavi-Moghadam S, Larijani B, Rahim F, Bana N, Sarvari M, Adibi H, Foroughi Heravani N, Hadavandkhani M, Arjmand B (2019c) Development and validation of Alzheimer’s disease animal model for the purpose of regenerative medicine. Cell Tissue Bank 20(2):141–151

    PubMed  Google Scholar 

  • Gruber AJ, Cole JO (1991) Antidepressant effects of flupenthixol. Pharmacother J Hum Pharmacol Drug Ther 11(6):450–459

    CAS  Google Scholar 

  • Guggenheim FG, Babigian HM (1974) Catatonic schizophrenia: epidemiology and clinical course—a 7-year register study of 798 cases. J Nerv Men Dis 158(4):291–305

    CAS  Google Scholar 

  • Hassan AU, Hassan G, Rasool Z (2009) Role of stem cells in treatment of neurological disorder. Int J Health Sci 3(2):227

    Google Scholar 

  • Heckers S, Barch DM, Bustillo J, Gaebel W, Gur R, Malaspina D, Owen MJ, Schultz S, Tandon R, Tsuang M (2013) Structure of the psychotic disorders classification in DSM-5. Schizophr Res 150(1):11–14

    PubMed  Google Scholar 

  • Herrmann K, Pistollato F, Stephens ML (2019) Beyond the 3Rs: expanding the use of human-relevant replacement methods in biomedical research. Altex 36(3):343–352

    PubMed  Google Scholar 

  • Hoffmann A, Ziller M, Spengler D (2019) Progress in iPSC-based modeling of psychiatric disorders. Int J Mol Sci 20(19):4896

    CAS  PubMed Central  Google Scholar 

  • Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III—the final common pathway. Schizophr Bull 35(3):549–562

    PubMed  PubMed Central  Google Scholar 

  • Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur S (2012) The nature of dopamine dysfunction in schizophrenia and what this means for treatment: meta-analysis of imaging studies. Arch Gen Psychiatry 69(8):776–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howes O, McCutcheon R, Stone J (2015) Glutamate and dopamine in schizophrenia: an update for the 21st century. J Psychopharmacol 29(2):97–115

    PubMed  PubMed Central  Google Scholar 

  • Ilieva IP, Farah MJ (2013) Enhancement stimulants: perceived motivational and cognitive advantages. Front Neurosci 7:198

    PubMed  PubMed Central  Google Scholar 

  • Insel TR (2010) Rethinking schizophrenia. Nature 468(7321):187–193

    CAS  PubMed  Google Scholar 

  • Janoutová J, Janácková P, Serý O, Zeman T, Ambroz P, Kovalová M, Varechová K, Hosák L, Jirík V, Janout V (2016) Epidemiology and risk factors of schizophrenia. Neuro Endocrinol Lett 37(1):1–8

    PubMed  Google Scholar 

  • Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308

    CAS  PubMed  Google Scholar 

  • Jones C, Watson D, Fone K (2011) Animal models of schizophrenia. Br J Pharmacol 164(4):1162–1194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kane JM, Correll CU (2010) Past and present progress in the pharmacologic treatment of schizophrenia. The Journal of clinical psychiatry 71(9):1115

    PubMed  PubMed Central  Google Scholar 

  • Kassianos A (2016) History of pharmacological treatments for mental health, pp 699–705

  • Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB (2015) Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry 2(3):258–270

    PubMed  PubMed Central  Google Scholar 

  • Konradi C, Heckers S (2003) Molecular aspects of glutamate dysregulation: implications for schizophrenia and its treatment. Pharmacol Ther 97(2):153–179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kudo S, Ishizaki T (1999) Pharmacokinetics of haloperidol. Clin Pharmacokinet 37(6):435–456

    CAS  PubMed  Google Scholar 

  • Lake J, Turner MS (2017) Urgent need for improved mental health care and a more collaborative model of care. Permanente J 21:17

    Google Scholar 

  • Lally J, MacCabe JH (2015) Antipsychotic medication in schizophrenia: a review. Br Med Bull 114(1):169–179

    CAS  PubMed  Google Scholar 

  • Larijani B, Goodarzi P, Payab M, Tayanloo-Beik A, Sarvari M, Gholami M, Gilany K, Nasli-Esfahani E, Yarahmadi M, Ghaderi F, Arjmand B (2019) The design and application of an appropriate parkinson’s disease animal model in regenerative medicine. Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/5584_2019_422

    Chapter  Google Scholar 

  • Larijani B, Heravani NF, Alavi-Moghadam S, Goodarzi P, Rezaei-Tavirani M, Payab M, Gholami M, Razi F, Arjmand B (2020) Cell therapy targets for autism spectrum disorders: hopes, challenges and future directions

  • Lau C-I, Wang H-C, Hsu J-L, Liu M-E (2013) Does the dopamine hypothesis explain schizophrenia? Rev Neurosci 24(4):389–400

    CAS  PubMed  Google Scholar 

  • Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373(9657):31–41

    CAS  PubMed  Google Scholar 

  • Lippi G (2016) Schizophrenia in a member of the family: burden, expressed emotion and addressing the needs of the whole family. S Afr J Psychiatry 22(1):1–7

    Google Scholar 

  • Lodge DJ, Behrens MM, Grace AA (2009) A loss of parvalbumin-containing interneurons is associated with diminished oscillatory activity in an animal model of schizophrenia. J Neurosci 29(8):2344–2354

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martín F, Sánchez-Gilabert A, Tristán-Manzano M, Benabdellah K (2016) Stem cells for modeling human disease. Pluripotent Stem Cells From the Bench to the Clinic, p 257

  • McGorry PD, Hartmann JA, Spooner R, Nelson B (2018) Beyond the “at risk mental state” concept: transitioning to transdiagnostic psychiatry. World Psychiatry 17(2):133–142

    PubMed  PubMed Central  Google Scholar 

  • McGrath J, Saha S, Chant D, Welham J (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30(1):67–76

    PubMed  Google Scholar 

  • Michael JO, Mortensen PB (2016) Schizophrenia

  • Miller B (2019) Immunotherapy as personalized medicine for schizophrenia? Psychiatric Times 36(2)

  • Morison AK (2009) Cognitive behavior therapy for people with schizophrenia. Psychiatry (Edgmont) 6(12):32

    Google Scholar 

  • Morrison JR (1974) Changes in subtype diagnosis of schizophrenia: 1920-1966. Am J Psychiatry 131(6):674–677

    CAS  PubMed  Google Scholar 

  • Morrison AP, Turkington D, Pyle M, Spencer H, Brabban A, Dunn G, Christodoulides T, Dudley R, Chapman N, Callcott P, Grace T (2014) Cognitive therapy for people with schizophrenia spectrum disorders not taking antipsychotic drugs: a single-blind randomised controlled trial. Lancet 383(9926):1395–1403

    PubMed  Google Scholar 

  • Moslem M, Olive J, Falk A (2019) Stem cell models of schizophrenia, what have we learned and what is the potential? Schizophr Res 210:3–12

    PubMed  Google Scholar 

  • Müller N, Riedel M, Gruber R, Ackenheil M, Schwarz MJ (2000) The immune system and schizophrenia: an integrative view. Ann N Y Acad Sci 917(1):456–467

    PubMed  Google Scholar 

  • Noh H, Shao Z, Coyle JT, Chung S (2017) Modeling schizophrenia pathogenesis using patient-derived induced pluripotent stem cells (iPSCs). BBA-Mol Basis Dis 1863(9):2382–2387

    CAS  Google Scholar 

  • O’Brien T, Barry FP (2009) Stem cell therapy and regenerative medicine. Mayo clinic proceedings, Elsevier

  • Owen MJ, Sawa A, Mortensen PB (2016) Schizophrenia. Lancet 388(10039):86–97

    PubMed  PubMed Central  Google Scholar 

  • Pagel J, Parnes BL (2001) Medications for the treatment of sleep disorders: an overview. Primary Care Companion J Clin Psychiatry 3(3):118

    CAS  PubMed  Google Scholar 

  • Pagsberg AK (2013) Schizophrenia spectrum and other psychotic disorders. Eur Child Adolesc Psychiatry 22(1):3–9

    Google Scholar 

  • Pandarakalam JP (2015) Formal psychiatric treatment: advantages and disadvantages. Br J Med Practition 8(4):a837

    Google Scholar 

  • Patel KR, Cherian J, Gohil K, Atkinson D (2014) Schizophrenia: overview and treatment options. P&T Peer Rev J Form Manag 39(9):638–645

    Google Scholar 

  • Payab M, Goodarzi P, Heravani NF, Hadavandkhani M, Zarei Z, Falahzadeh K, Larijani B, Rahim F, Arjmand B (2018) Stem cell and obesity: current state and future perspective. Cell biology and translational medicine, vol 2. Springer, Berlin, pp 1–22

    Google Scholar 

  • Perez SM, Lodge DJ (2013) Hippocampal interneuron transplants reverse aberrant dopamine system function and behavior in a rodent model of schizophrenia. Mol Psychiatry 18(11):1193–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peroni JF, Borjesson DL (2011) Anti-inflammatory and immunomodulatory activities of stem cells. Veter Clin Equine Pract 27(2):351–362

    Google Scholar 

  • Peuskens J, Link C (1997) A comparison of quetiapine and chlorpromazine in the treatment of schizophrenia. Acta Psychiatr Scand 96(4):265–273

    CAS  PubMed  Google Scholar 

  • Polese D, Fornaro M, Palermo M, De Luca V, De Bartolomeis A (2019) Treatment-resistant to antipsychotics: a resistance to everything? Psychotherapy in treatment-resistant schizophrenia and nonaffective psychosis: a 25-year systematic review and exploratory meta-analysis. Front Psychiatry 10:210

    PubMed  PubMed Central  Google Scholar 

  • Polson AG, Fuji RN (2012) The successes and limitations of preclinical studies in predicting the pharmacodynamics and safety of cell-surface-targeted biological agents in patients. Br J Pharmacol 166(5):1600–1602

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qu G, Xie X, Li X, Chen Y, Isla ND, Huselstein C, Stoltz J-F, Li Y (2018) Immunomodulatory function of mesenchymal stem cells: regulation and application. J Cell Immunother 4(1):1–3

    Google Scholar 

  • Quadrato G, Brown J, Arlotta P (2016) The promises and challenges of human brain organoids as models of neuropsychiatric disease. Nat Med 22(11):1220–1228

    CAS  PubMed  Google Scholar 

  • Rahim F, Arjmand B, Larijani B, Goodarzi P (2018a) Stem cells treatment to combat Cancer and genetic disease: from stem cell therapy to gene-editing correction. Stem cells for cancer and genetic disease treatment. Springer, Berlin, pp 29–59

    Google Scholar 

  • Rahim F, Arjmand B, Tirdad R, Malehi AS (2018b) Stem cell therapy for multiple sclerosis. Cochrane Database Syst Rev 2018(6):CD013049

    PubMed Central  Google Scholar 

  • Robertson GS, Hori SE, Powell KJ (2006) Schizophrenia: an integrative approach to modelling a complex disorder. J Psychiatry Neurosci 31(3):157

    PubMed  PubMed Central  Google Scholar 

  • Rodríguez-Frutos B, Otero-Ortega L, Gutiérrez-Fernández M, Fuentes B, Ramos-Cejudo J, Díez-Tejedor E (2016) Stem cell therapy and administration routes after stroke. Transl Stroke Res 7(5):378–387

    PubMed  Google Scholar 

  • Rosenheck RA, Leslie DL, Sindelar J, Miller EA, Lin H, Stroup TS, McEvoy J, Davis SM, Keefe RS, Swartz M (2006) Cost-effectiveness of second-generation antipsychotics and perphenazine in a randomized trial of treatment for chronic schizophrenia. Am J Psychiatry 163(12):2080–2089

    PubMed  Google Scholar 

  • Roudsari PP, Alavi-Moghadam S, Payab M, Sayahpour FA, Aghayan HR, Goodarzi P, Mohamadi-Jahani F, Larijani B, Arjmand B (2020a) Auxiliary role of mesenchymal stem cells as regenerative medicine soldiers to attenuate inflammatory processes of severe acute respiratory infections caused by COVID-19. Cell Tissue Bank. https://doi.org/10.1007/s10561-020-09842-3

    Article  Google Scholar 

  • Roudsari PP, Alavi-Moghadam S, Rezaei-Tavirani M, Goodarzi P, Tayanloo-Beik A, Sayahpour FA, Larijani B, Arjmand B (2020b) The outcome of stem cell-based therapies on the immune responses in rheumatoid arthritis. Advances in experimental medicine and biology. Springer, New York, NY. https://doi.org/10.1007/5584_2020_581

    Chapter  Google Scholar 

  • Roussos P, Guennewig B, Kaczorowski DC, Barry G, Brennand KJ (2016) Activity-dependent changes in gene expression in schizophrenia human-induced pluripotent stem cell neurons. JAMA Psychiatry 73(11):1180–1188

    PubMed  PubMed Central  Google Scholar 

  • Rusche B (2003) The 3Rs and animal welfare-conflict or the way forward. Altex 20(Suppl 1):63–76

    PubMed  Google Scholar 

  • Rutter M (1972) Childhood schizophrenia reconsidered. J Autism Child Schizophr 2(3):315–337

    CAS  PubMed  Google Scholar 

  • Saeedi P, Halabian R, Fooladi AAI (2019) A revealing review of mesenchymal stem cells therapy, clinical perspectives and modification strategies. Stem Cell Invest 6:34

    CAS  Google Scholar 

  • Sartori SB, Singewald N (2019) Novel pharmacological targets in drug development for the treatment of anxiety and anxiety-related disorders. Pharmacol Ther 204:107402

    CAS  PubMed  Google Scholar 

  • Schultz SH, North SW, Shields CG (2007) Schizophrenia: a review. Am Fam Phys 75(12):1821–1829

    Google Scholar 

  • Serretti A (2018) The present and future of precision medicine in psychiatry: focus on clinical psychopharmacology of antidepressants. Clin Psychopharmacol Neurosci 16(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shahid A, Chung SA, Phillipson R, Shapiro CM (2012) An approach to long-term sedative-hypnotic use. Nat Sci Sleep 4:53

    PubMed  PubMed Central  Google Scholar 

  • Shaw CR, Lucas AR (1970) The psychiatric disorders of childhood

  • Sneddon LU, Halsey LG, Bury NR (2017) Considering aspects of the 3Rs principles within experimental animal biology. J Exp Biol 220(17):3007–3016

    PubMed  Google Scholar 

  • Soleimani M, Aghayan HR, Goodarzi P, Hagh MF, Lajimi AA, Saki N, Jahani FM, Javidan AN, Arjmand B (2016) Stem Cell Therapy-Approach for Multiple Sclerosis Treatment. Arch Neurosci 3(1):e21564

    Google Scholar 

  • Soliman M, Aboharb F, Zeltner N, Studer L (2017) Pluripotent stem cells in neuropsychiatric disorders. Mol Psychiatry 22(9):1241–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  • St. Clair D, Johnstone M (2018) Using mouse transgenic and human stem cell technologies to model genetic mutations associated with schizophrenia and autism. Philos Trans R Soc B Biol Sci 373(1742):20170037

    Google Scholar 

  • Steeds H, Carhart-Harris RL, Stone JM (2015) Drug models of schizophrenia. Ther Adv Psychopharmacol 5(1):43–58

    PubMed  PubMed Central  Google Scholar 

  • Sterneckert JL, Reinhardt P, Schöler HR (2014) Investigating human disease using stem cell models. Nat Rev Genet 15(9):625–639

    CAS  PubMed  Google Scholar 

  • Takahashi H, Higuchi M, Suhara T (2006) The role of extrastriatal dopamine D2 receptors in schizophrenia. Biol Psychiatry 59(10):919–928

    CAS  PubMed  Google Scholar 

  • Takahashi N, Sakurai T, Davis KL, Buxbaum JD (2011) Linking oligodendrocyte and myelin dysfunction to neurocircuitry abnormalities in schizophrenia. Prog Neurobiol 93(1):13–24

    CAS  PubMed  Google Scholar 

  • Tsuang MT, Winokur G (1974) Criteria for subtyping schizophrenia: clinical differentiation of hebephrenic and paranoid schizophrenia. Arch Gen Psychiatry 31(1):43–47

    CAS  PubMed  Google Scholar 

  • Vadodaria KC, Amatya DN, Marchetto MC, Gage FH (2018) Modeling psychiatric disorders using patient stem cell-derived neurons: a way forward. Genome Med 10(1):1

    PubMed  PubMed Central  Google Scholar 

  • van Os J, Kapur S (2009) Schizophrenia. Lancet 374(9690):635–645

    PubMed  Google Scholar 

  • Watmuff B, Liu B, Karmacharya R (2017) Stem cell-derived neurons in the development of targeted treatment for schizophrenia and bipolar disorder. Pharmacogenomics 18(5):471–479

    CAS  PubMed  Google Scholar 

  • Weniger G, Lange C, Rüther E, Irle E (2004) Differential impairments of facial affect recognition in schizophrenia subtypes and major depression. Psychiatry Res 128(2):135–146

    PubMed  Google Scholar 

  • Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG (2019) An overview of animal models related to schizophrenia. Can J Psychiatry 64(1):5–17

    PubMed  Google Scholar 

  • Wright P, O’Flaherty L (2003) Antipsychotic drugs: atypical advantages and typical disadvantages. Irish J Psychol Med 20(1):24–27

    Google Scholar 

  • Xu H, Haroutunian V, Bartzokis G, Shenton ME (2011) Oligodendrocytes in schizophrenia, Hindawi

  • You M-J, Bang M, Park H-S, Yang B, Jang KB, Yoo J, Hwang D-Y, Kim M, Kim B, Lee S-H (2020a) Human umbilical cord-derived mesenchymal stem cells alleviate schizophrenia-relevant behaviors in amphetamine-sensitized mice by inhibiting neuroinflammation. Transl Psychiatry 10(1):1–15

    Google Scholar 

  • You M-J, Bang M, Park H-S, Yang B, Jang KB, Yoo J, Hwang D-Y, Kim M, Kim B, Lee S-H, Kwon M-S (2020b) Human umbilical cord-derived mesenchymal stem cells alleviate schizophrenia-relevant behaviors in amphetamine-sensitized mice by inhibiting neuroinflammation. Transl Psychiatry 10(1):123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-P (2016) The benefits of antipsychotic drugs: symptom control and improved quality of life. Life-threatening effects of antipsychotic drugs. Elsevier, Berlin, pp 295–309

    Google Scholar 

  • Zhang Y, Zhao Y, Song X, Luo H, Sun J, Han C, Gu X, Li J, Cai G, Zhu Y (2020) Modulation of stem cells as therapeutics for severe mental disorders and cognitive impairments. Front Psychiatry 11:80

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This article received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larijani, B., Parhizkar Roudsari, P., Hadavandkhani, M. et al. Stem cell-based models and therapies: a key approach into schizophrenia treatment. Cell Tissue Bank 22, 207–223 (2021). https://doi.org/10.1007/s10561-020-09888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10561-020-09888-3

Keywords

Navigation