Skip to main content
Log in

Ceria-Based Catalysts for Selective Hydrogenation Reactions: A Critical Review

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

The catalytic behaviour of ceria (cerium (IV) Oxide; CeO2) incorporated with trace metals, metallic particles or mixed support systems has been studied extensively for various heterogeneous reactions. Moreover, unique redox properties and structural defects have made ceria a desirable choice for selective hydrogenation reactions. This paper provides the first review of studies focusing on the performance of ceria in selective catalytic hydrogenation. The review covers the fundamentals, economic benefits, and application of ceria in the aforementioned reaction, highlighting the theoretical basis and importance of non-stoichiometric forms of ceria (CeO2-x). We have contrasted the effect of operational parameters and molecular alterations as documented in the literature, and constructed the mechanistic and kinetic insights on the heterogeneous hydrogenation over ceria. The remarks in this review provide necessary future outlooks, recommendations, and plausaible improvements on the catalytic performance of ceria.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Viswanathan B (2009) Catalysis: Selected Applications, 1st edn. Alpha Science International Ltd, Oxford

    Google Scholar 

  2. Bagheri S, Julkapli NM, Hamid SBA (2014) Titanium dioxide as a catalyst support in heterogeneous catalysis. Sci World J 2014:727496

    Google Scholar 

  3. Thomas JM, Williams RJP (2005) Catalysis: principles, progress, prospects. Philos Trans R Soc A 363(1829):765–791

    CAS  Google Scholar 

  4. Ross JRH (2012) Heterogeneous Catalysis: Fundamentals and Applications. Elsevier, Amsterdam

    Google Scholar 

  5. Bond GC (1990) Heterogeneous Catalysis: Principles and Applications, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  6. Kojima Y et al (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrogen Energy 27(10):1029–1034

    CAS  Google Scholar 

  7. Chandra M, Xu Q (2007) Room temperature hydrogen generation from aqueous ammonia-borane using noble metal nano-clusters as highly active catalysts. J Power Sources 168(1):135–142

    CAS  Google Scholar 

  8. Krishnan P, Yang T-H, Lee W-Y, Kim C-S (2005) PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions. J Power Sources 143(1):17–23

    CAS  Google Scholar 

  9. Behrens M et al (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science (80-) 336(6083):893–897

    CAS  Google Scholar 

  10. Fujitani T, Nakamura J (2000) The chemical modification seen in the Cu/ZnO methanol synthesis catalysts. Appl Catal A 191(1):111–129

    CAS  Google Scholar 

  11. Védrine JC (2017) Heterogeneous catalysis on metal oxides. Catalysts 7(11):341

    Google Scholar 

  12. Kondoh H, Tanaka K, Nakasaka Y, Tago T, Masuda T (2016) Catalytic cracking of heavy oil over TiO2–ZrO2 catalysts under superheated steam conditions. Fuel 167:288–294

    CAS  Google Scholar 

  13. Keyvanloo K, Mohamadalizadeh A, Towfighi J (2012) A novel CeO2 supported on carbon nanotubes coated with SiO2 catalyst for catalytic cracking of naphtha. Appl Catal A 417–418:53–58

    Google Scholar 

  14. Chin SY, Chin Y-H, Amiridis MD (2006) Hydrogen production via the catalytic cracking of ethane over Ni/SiO2 catalysts. Appl Catal A 300(1):8–13

    CAS  Google Scholar 

  15. Wang L et al (2016) A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. React Kinet Mech Catal 119(1):219–233

    CAS  Google Scholar 

  16. Mondal T, Pant KK, Dalai AK (2015) Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst. Int J Hydrogen Energy 40(6):2529–2544

    CAS  Google Scholar 

  17. Wu C, Williams PT (2010) A novel nano-Ni/SiO2 catalyst for hydrogen production from steam reforming of ethanol. Environ Sci Technol 44(15):993–5998

    Google Scholar 

  18. Chin Y-H, Wang Y, Dagle RA, Shari Li X (2003) Methanol steam reforming over Pd/ZnO: catalyst preparation and pretreatment studies. Fuel Process Technol 83(1):193–201

    CAS  Google Scholar 

  19. Nagaoka K, Takanabe K, Aika K (2003) Influence of the reduction temperature on catalytic activity of Co/TiO2 (anatase-type) for high pressure dry reforming of methane. Appl Catal A 255(1):13–21

    CAS  Google Scholar 

  20. Bettis SE et al (2014) Photophysical characterization of a chromophore/water oxidation catalyst containing a layer-by-layer assembly on nanocrystalline TiO2 using ultrafast spectroscopy. J Phys Chem A 118(45):10301–10308

    CAS  PubMed  Google Scholar 

  21. Venezia AM et al (2003) Activity of SiO2 supported gold-palladium catalysts in CO oxidation. Appl Catal A 251(2):359–368

    CAS  Google Scholar 

  22. Zhen KJ, Khan MM, Mak CH, Lewis KB, Somorjai GA (1985) Partial oxidation of methane with nitrous oxide over V2O5SiO2 catalyst. J Catal 94(2):501–507

    CAS  Google Scholar 

  23. Bekyarova E, Fornasiero P, Kašpar J, Graziani M (1998) CO oxidation on Pd/CeO2–ZrO2 catalysts. Catal Today 45(1):179–183

    CAS  Google Scholar 

  24. Vlasenko NV, Kochkin YN, Strizhak PE (2009) Effect of acid–base characteristics of ZrO2–Y2O3 on catalytic properties in carboxylation of methanol. Theor Exp Chem 45(4):271

    CAS  Google Scholar 

  25. Margitfalvi JL, Vankó G, Borbáth I, Tompos A, Vértes A (2000) Characterization of Sn–Pt/SiO2 catalysts used in selective hydrogenation of crotonaldehyde by mössbauer spectroscopy. J Catal 190(2):474–477

    CAS  Google Scholar 

  26. Li Y, Jang BWL (2011) Non-thermal RF plasma effects on surface properties of Pd/TiO2 catalysts for selective hydrogenation of acetylene. Appl Catal A 392(1):173–179

    CAS  Google Scholar 

  27. Liu H, Hu Q, Fan G, Yang L, Li F (2015) Surface synergistic effect in well-dispersed Cu/MgO catalysts for highly efficient vapor-phase hydrogenation of carbonyl compounds. Catal Sci Technol 5(8):3960–3969

    CAS  Google Scholar 

  28. Ramos-Fernández EV et al (2008) Pt/Ta2O5–ZrO2 catalysts for vapour phase selective hydrogenation of crotonaldehyde. Appl Catal A 349(1):165–169

    Google Scholar 

  29. McCarty JG, Gusman M, Lowe DM, Hildenbrand DL, Lau KN (1999) Stability of supported metal and supported metal oxide combustion catalysts. Catal Today 47(1):5–17

    CAS  Google Scholar 

  30. Zhang Z, Liu J, Gu J, Su L, Cheng L (2014) An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ Sci 7(8):2535–2558

    CAS  Google Scholar 

  31. Panagiotopoulou P (2017) Hydrogenation of CO2 over supported noble metal catalysts. Appl Catal A 542:026

    Google Scholar 

  32. Bahruji H et al (2016) Pd/ZnO catalysts for direct CO2 hydrogenation to methanol. J Catal 343:133–146

    CAS  Google Scholar 

  33. Arora N, Deo G, Wachs IE, Hirt AM (1996) Surface aspects of bismuth-metal oxide catalysts. J Catal 159(1):1–13

    CAS  Google Scholar 

  34. Gangopadhyay S, Frolov DD, Masunov AE, Seal S (2014) Structure and properties of cerium oxides in bulk and nanoparticulate forms. J Alloys Compd 584:199–208

    CAS  Google Scholar 

  35. Pulido-Reyes G et al (2015) Untangling the biological effects of cerium oxide nanoparticles: the role of surface valence states. Sci Rep 5:1–14

    Google Scholar 

  36. Dey S, Dhal GC (2020) Cerium catalysts applications in carbon monoxide oxidations. Mater Sci Energy Technol 3:6–24

    Google Scholar 

  37. Artini C, Pani M, Carnasciali MM, Buscaglia MT, Plaisier JR, Costa GA (2015) Structural features of Sm- and Gd-doped ceria studied by synchrotron X-ray diffraction and μ-Raman spectroscopy. Inorg Chem 54(8):4126–4137

    CAS  PubMed  Google Scholar 

  38. Shinde VM, Madras G (2012) Water gas shift reaction over multi-component ceria catalysts. Appl Catal B 123–124:367–378

    Google Scholar 

  39. Andreeva D, Ivanov I, Ilieva L, Abrashev MV (2006) Gold catalysts supported on ceria and ceria–alumina for water-gas shift reaction. Appl Catal A 302(1):127–132

    CAS  Google Scholar 

  40. Jacobs G, Keogh RA, Davis BH (2007) Steam reforming of ethanol over Pt/ceria with co-fed hydrogen. J Catal 245(2):326–337

    CAS  Google Scholar 

  41. Wolfbeisser A, Sophiphun O, Bernardi J, Wittayakun J, Föttinger K, Rupprechter G (2016) Methane dry reforming over ceria-zirconia supported Ni catalysts. Catal Today 277:234–245

    CAS  Google Scholar 

  42. Bunluesin T, Putna ES, Gorte RJ (1996) A comparison of CO oxidation on ceria-supported Pt, Pd, and Rh. Catal Lett 41(1):1–5

    CAS  Google Scholar 

  43. Centeno MÁ, Portales C, Carrizosa I, Odriozola JA (2005) Gold supported CeO2/Al2O3 catalysts for CO oxidation: influence of the ceria phase. Catal Lett 102(3):289–297

    CAS  Google Scholar 

  44. Phatak AA et al (2007) Kinetics of the water-gas shift reaction on Pt catalysts supported on alumina and ceria. Catal Today 123(1–4):224–234

    CAS  Google Scholar 

  45. Grabow LC, Gokhale AA, Evans ST, Dumesic JA, Mavrikakis M (2008) Mechanism of the water gas shift reaction on Pt: first principles, experiments, and microkinetic modeling. J Phys Chem C 112(12):4608–4617

    CAS  Google Scholar 

  46. Hilaire S, Wang X, Luo T, Gorte RJ, Wagner J (2001) A comparative study of water-gas-shift reaction over ceria supported metallic catalysts. Appl Catal A 215(1):271–278

    CAS  Google Scholar 

  47. Gorte RJ, Zhao S (2005) Studies of the water-gas-shift reaction with ceria-supported precious metals. Catal Today 104(1):18–24

    CAS  Google Scholar 

  48. Bunluesin T, Gorte RJ, Graham GW (1998) Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties. Appl Catal B 15(1):107–114

    CAS  Google Scholar 

  49. Gorte RJ (2010) Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56(5):1126–1135

    CAS  Google Scholar 

  50. Ricote S, Jacobs G, Milling M, Ji Y, Patterson PM, Davis BH (2006) Low temperature water–gas shift: characterization and testing of binary mixed oxides of ceria and zirconia promoted with Pt. Appl Catal A 303(1):35–47

    CAS  Google Scholar 

  51. Craciun R, Shereck B, Gorte RJ (1998) Kinetic studies of methane steam reforming on ceria-supported Pd. Catal Lett 51(3):149–153

    CAS  Google Scholar 

  52. X. Wang and R. J. Gorte (2001) Steam reforming of n -butane on Pd/ceria, 73(1), 15–19

  53. Moretti E et al (2015) Ceria-zirconia based catalysts for ethanol steam reforming. Fuel 153:166–175

    CAS  Google Scholar 

  54. Yi N, Si R, Saltsburg H, Flytzani-Stephanopoulos M (2010) Steam reforming of methanol over ceria and gold-ceria nanoshapes. Appl Catal B 95(1):87–92

    CAS  Google Scholar 

  55. Al-Swai BM, Osman N, Alnarabiji MS, Adesina AA, Abdullah B (2019) Syngas production via methane dry reforming over ceria–magnesia mixed oxide-supported nickel catalysts. Ind Eng Chem Res 58(2):539–552

    CAS  Google Scholar 

  56. Wang X, Gorte RJ (2002) A study of steam reforming of hydrocarbon fuels on Pd/ceria. Appl Catal A 224(1–2):209–218

    CAS  Google Scholar 

  57. Zhang B, Tang X, Li Y, Xu Y, Shen W (2007) Hydrogen production from steam reforming of ethanol and glycerol over ceria-supported metal catalysts. Int J Hydrogen Energy 32(13):2367–2373

    CAS  Google Scholar 

  58. Craciun R, Shereck B, Gorte RJ (1998) Kinetic studies of methane steam reforming on ceria-supported Pd. Catal Lett 51(3–4):149–153

    CAS  Google Scholar 

  59. Laosiripojana N, Assabumrungrat S (2005) Catalytic dry reforming of methane over high surface area ceria. Appl Catal B 60(1):107–116

    CAS  Google Scholar 

  60. Venkataswamy P, Rao KN, Jampaiah D, Reddy BM (2015) Nanostructured manganese doped ceria solid solutions for CO oxidation at lower temperatures. Appl Catal B 162:122–132

    CAS  Google Scholar 

  61. Janoš P, Hladík T, Kormunda M, Ederer J, Šťastný M (2014) Thermal treatment of cerium oxide and its properties: adsorption ability versus degradation efficiency. Adv Mater Sci Eng 2014:706041

    Google Scholar 

  62. Kim G (1982) Ceria-promoted three-way catalysts for auto exhaust emission control. Ind Eng Chem Prod Res Dev 21(2):267–274

    CAS  Google Scholar 

  63. Rodriguez JA, Grinter DC, Liu Z, Palomino RM, Senanayake SD (2017) Ceria-based model catalysts: fundamental studies on the importance of the metal-ceria interface in CO oxidation, the water-gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem Soc Rev 46(7):1824–1841

    CAS  PubMed  Google Scholar 

  64. Wu Z, Li M, Overbury SH (2012) On the structure dependence of CO oxidation over CeO2 nanocrystals with well-defined surface planes. J Catal 285(1):61–73

    CAS  Google Scholar 

  65. Montini T, Melchionna M, Monai M, Fornasiero P (2016) Fundamentals and catalytic applications of CeO2-based materials. Chem Rev 116(10):5987–6041

    CAS  PubMed  Google Scholar 

  66. Gamarra D, Belver C, Fernández-García M, Martínez-Arias A (2007) Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species. J Am Chem Soc 129(40):12064–12065

    CAS  PubMed  Google Scholar 

  67. Lykaki M et al (2018) Ceria nanoparticles shape effects on the structural defects and surface chemistry: implications in CO oxidation by Cu/CeO2 catalysts. Appl Catal B 230:18–28

    CAS  Google Scholar 

  68. Razeghi A, Khodadadi A, Ziaei-Azad H, Mortazavi Y (2010) Activity enhancement of Cu-doped ceria by reductive regeneration of CuO–CeO2 catalyst for preferential oxidation of CO in H2-rich streams. Chem Eng J 164(1):214–220

    CAS  Google Scholar 

  69. Zheng M, Wang S, Li M, Xia C (2017) H2 and CO oxidation process at the three-phase boundary of Cu-ceria cermet anode for solid oxide fuel cell. J Power Sources 345:165–175

    CAS  Google Scholar 

  70. Blaser H-U, Malan C, Pugin B, Spindler F, Steiner H, Studer M (2003) Selective hydrogenation for fine chemicals: recent trends and new developments. Adv Synth Catal 345(1–2):103–151

    CAS  Google Scholar 

  71. Kieboom APG, van Rantwijk F (1977) Hydrogenation and Hydrogenolysis in Synthetic Organic Chemistry. Springer, Netherlands

    Google Scholar 

  72. Molnár Á, Sárkány A, Varga M (2001) Hydrogenation of carbon–carbon multiple bonds: chemo-, regio- and stereo-selectivity. J Mol Catal A 173(1):185–221

    Google Scholar 

  73. Leviness S, Nair V, Weiss AH, Schay Z, Guczi L (1984) Acetylene hydrogenation selectivity control on PdCu/Al2O3 catalysts. J Mol Catal 25(1):131–140

    CAS  Google Scholar 

  74. Claus P (2005) Heterogeneously catalysed hydrogenation using gold catalysts. Appl Catal A 291(1):222–229

    CAS  Google Scholar 

  75. Kang JH, Shin EW, Kim WJ, Park JD, Moon SH (2002) Selective hydrogenation of acetylene on TiO2-added Pd catalysts. J Catal 208(2):310–320

    CAS  Google Scholar 

  76. Lin W, Cheng H, He L, Yu Y, Zhao F (2013) High performance of Ir-promoted Ni/TiO2 catalyst toward the selective hydrogenation of cinnamaldehyde. J Catal 303:110–116

    CAS  Google Scholar 

  77. Grünert W, Brückner A, Hofmeister H, Claus P (2004) Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation. J Phys Chem B 108(18):5709–5717

    Google Scholar 

  78. Li D, Ichikuni N, Shimazu S, Uematsu T (1999) Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction. Appl Catal A 180(1):227–235

    CAS  Google Scholar 

  79. Weng Z, Zaera F (2018) Sub-monolayer control of mixed-oxide support composition in catalysts via atomic layer deposition: selective hydrogenation of cinnamaldehyde promoted by (SiO2-ALD)-Pt/Al2O3. ACS Catal 8(9):8513–8524

    CAS  Google Scholar 

  80. Hammoudeh A, Mahmoud S (2003) Selective hydrogenation of cinnamaldehyde over Pd/SiO2 catalysts: selectivity promotion by alloyed Sn. J Mol Catal A 203(1):231–239

    CAS  Google Scholar 

  81. Sárkány A, Horváth A, Beck A (2002) Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl Catal A 229(1):117–125

    Google Scholar 

  82. Hu S-C, Chen Y-W (2001) Partial hydrogenation of benzene on Ru−Zn/SiO2 catalysts. Ind Eng Chem Res 40(26):6099–6104

    CAS  Google Scholar 

  83. Tang T-S, Cheah K-Y, Mizukami F, Niwa S, Toba M (1994) Hydrogenation of 9-octadecenoic acid by Ru−Sn−Al2O3 catalysts: effects of catalyst preparation method. J Am Oil Chem Soc 71(5):501–506

    CAS  Google Scholar 

  84. Jia J, Haraki K, Kondo JN, Domen K, Tamaru K (2000) Selective hydrogenation of acetylene over Au/Al2O3 catalyst. J Phys Chem B 104(47):11153–11156

    CAS  Google Scholar 

  85. Yuan P, Liu Z, Zhang W, Sun H, Liu S (2010) Cu-Zn/Al2O3 catalyst for the hydrogenation of esters to alcohols. Chin J Catal 31(7):769–775

    CAS  Google Scholar 

  86. Zhang Y, Fei J, Yu Y, Zheng X (2007) Study of CO2 hydrogenation to methanol over Cu-V/γ-Al2O3 catalyst. J Nat Gas Chem 16(1):12–15

    CAS  Google Scholar 

  87. Protasova LN et al (2011) ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols. Catal Sci Technol 1(5):768–777

    Google Scholar 

  88. Bailie JE, Hutchings GJ (2001) Promotion by sulfur of Ag/ZnO catalysts for the hydrogenation of but-2-enal. Catal Commun 2(9):291–294

    CAS  Google Scholar 

  89. Kattel S, Ramirez PJ, Chen JG, Rodriguez JA, Liu P (2017) Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science(80-) 355(6331):1296–1299

    CAS  Google Scholar 

  90. Li B, Hu G-S, Jin L-Y, Hong X, Lu J-Q, Luo M-F (2013) Characterizations of Ru/ZnO catalysts with different Ru contents for selective hydrogenation of crotonaldehyde. J Ind Eng Chem 19(1):250–255

    CAS  Google Scholar 

  91. Kondo J et al (1993) Infrared study of hydrogenation of benzoic acid to benzaldehyde on ZrO2 catalysts. Bull Chem Soc Jpn 66(10):3085–3090

    CAS  Google Scholar 

  92. Donphai W, Piriyawate N, Witoon T, Jantaratana P, Varabuntoonvit V, Chareonpanich M (2016) Effect of magnetic field on CO2 conversion over Cu-ZnO/ZrO2 catalyst in hydrogenation reaction. J CO2 Util 16:204–211

    CAS  Google Scholar 

  93. Han X, Zhou R, Yue B, Zheng X (2006) Selective hydrogenation of cinnamaldehyde over Pt/ZrO2 catalyst modified by Cr, Mn, Fe, Co and Ni. Catal Lett 109(3):157–161

    CAS  Google Scholar 

  94. Xu Z, Chen L, Shao Y, Yin D, Zheng S (2009) Catalytic hydrogenation of aqueous nitrate over Pd−Cu/ZrO2 catalysts. Ind Eng Chem Res 48(18):8356–8363

    CAS  Google Scholar 

  95. Vilé G, Bridier B, Wichert J, Pérez-Ramírez J (2012) Ceria in hydrogenation catalysis: high selectivity in the conversion of alkynes to olefins. Angew Chem Int Ed 51(34):8620–8623

    Google Scholar 

  96. Mullins DR (2015) The surface chemistry of cerium oxide. Surf Sci Rep 70(1):42–85

    CAS  Google Scholar 

  97. Trovarelli A (1996) Catalytic properties of ceria and CeO2-containing materials. Catal Rev 38(4):439–520

    CAS  Google Scholar 

  98. Kammert J, Moon J, Wu Z (2020) A review of the interactions between ceria and H2 and the applications to selective hydrogenation of alkynes. Chin J Catal 41(6):901–914

    CAS  Google Scholar 

  99. Beckers J, Rothenberg G (2010) Sustainable selective oxidations using ceria-based materials. Green Chem 12(6):939–994

    CAS  Google Scholar 

  100. Campbell CT, Peden CHF (2005) Oxygen vacancies and catalysis on ceria surfaces. Science(80-) 309(5735):713–714

    CAS  Google Scholar 

  101. Sun C, Li H, Chen L (2012) Nanostructured ceria-based materials: synthesis, properties, and applications. Energy Environ Sci 5(9):8475–8505

    CAS  Google Scholar 

  102. Marécot P, Mahoungou JR, Barbier J (1993) Benzene hydrogenation on platinum and iridium catalysts. Variation of the toxicity of sulfur with the nature of the support. Appl Catal A 101(1):143–149

    Google Scholar 

  103. Liu D et al (2013) Deactivation mechanistic studies of copper chromite catalyst for selective hydrogenation of 2-furfuraldehyde. J Catal 299:336–345

    CAS  Google Scholar 

  104. Mikkola J-P, Vainio H, Salmi T, Sjöholm R, Ollonqvist T, Väyrynen J (2000) Deactivation kinetics of Mo-supported Raney Ni catalyst in the hydrogenation of xylose to xylitol. Appl Catal A 196(1):143–155

    CAS  Google Scholar 

  105. Milone C, Neri G, Donato A, Musolino MG, Mercadante L (1996) Selective hydrogenation of benzene to cyclohexene on Ru/γ-Al2O3. J Catal 159(2):253–258

    CAS  Google Scholar 

  106. Crezee E, Hoffer BW, Berger RJ, Makkee M, Kapteijn F, Moulijn JA (2003) Three-phase hydrogenation of d-glucose over a carbon supported ruthenium catalyst—mass transfer and kinetics. Appl Catal A 251(1):1–17

    CAS  Google Scholar 

  107. Kim WJ, Shin EW, Kang JH, Moon SH (2003) Performance of Si-modified Pd catalyst in acetylene hydrogenation: catalyst deactivation behavior. Appl Catal A 251(2):305–313

    CAS  Google Scholar 

  108. Sagar Vijay Kumar P, Suresh L, Vinodkumar T, Reddy BM, Chandramouli GVP (2016) Zirconium doped ceria nanoparticles: an efficient and reusable catalyst for a green multicomponent synthesis of novel phenyldiazenyl–chromene derivatives using aqueous medium. ACS Sustain Chem Eng 4(4):2376–2386

    CAS  Google Scholar 

  109. Tonbul Y, Akbayrak S, Özkar S (2016) Palladium(0) nanoparticles supported on ceria: highly active and reusable catalyst in hydrogen generation from the hydrolysis of ammonia borane. Int J Hydrogen Energy 41(26):11154–11162

    CAS  Google Scholar 

  110. Malhotra R, Ali A (2018) Lithium-doped ceria supported SBA−15 as mesoporous solid reusable and heterogeneous catalyst for biodiesel production via simultaneous esterification and transesterification of waste cottonseed oil . Renew Energy 119:32–44

    CAS  Google Scholar 

  111. Violi IL, Zelcer A, Bruno MM, Luca V, Soler-Illia GJAA (2015) Gold Nanoparticles supported in zirconia–ceria mesoporous thin films: a highly active reusable heterogeneous nanocatalyst. ACS Appl Mater Interfaces 7(2):1114–1121

    CAS  PubMed  Google Scholar 

  112. Liao X, Zhang Y, Hill M, Xia X, Zhao Y, Jiang Z (2014) Highly efficient Ni/CeO2 catalyst for the liquid phase hydrogenation of maleic anhydride. Appl Catal A 488:256–264

    CAS  Google Scholar 

  113. Chueh WC, Haile SM (2010) A thermochemical study of ceria: exploiting an old material for new modes of energy conversion and CO2 mitigation. Philos Trans R Soc A 368(1923):3269–3294

    CAS  Google Scholar 

  114. Omar S (2019) Doped ceria for solid oxide fuel cells. In: Khan SB, Akhtar K (eds) Cerium Oxide. Rijeka, IntechOpen

    Google Scholar 

  115. Boaro M, Colussi S, Trovarelli A (2019) Ceria-based materials in hydrogenation and reforming reactions for CO2 valorization. Front Chem 7:28

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Malyukin Y, Klochkov V, Maksimchuk P, Seminko V, Spivak N (2017) Oscillations of cerium oxidation state driven by oxygen diffusion in colloidal nanoceria (CeO2−x). Nanoscale Res Lett 12(1):566

    PubMed  PubMed Central  Google Scholar 

  117. Han Z-K, Wang Y-G, Gao Y (2017) Catalytic role of vacancy diffusion in ceria supported atomic gold catalyst. Chem Commun 53(65):9125–9128

    CAS  Google Scholar 

  118. Yu K, Lou L-L, Liu S, Zhou W (2020) Asymmetric oxygen vacancies: the intrinsic redox active sites in metal oxide catalysts. Adv Sci 7(2):1901970

    CAS  Google Scholar 

  119. Li M, Collado L, Cárdenas-Lizana F, Keane MA (2018) Role of support oxygen vacancies in the gas phase hydrogenation of furfural over gold. Catal Lett 148(1):90–96

    CAS  Google Scholar 

  120. Liao X et al (2017) The catalytic hydrogenation of maleic anhydride on CeO2−δ-supported transition metal catalysts. Catalysts 7(9):1–15

    Google Scholar 

  121. Ko¨rner R, Ricken M, No¨lting J, Riess I (1989) Phase transformations in reduced ceria: determination by thermal expansion measurements. J Solid State Chem 78(1):136–147

    Google Scholar 

  122. Eyring L (1991) The binary lanthanide oxides: synthesis and identification. In: Meyer G, Morss LR (eds) Synthesis of Lanthanide and Actinide Compounds. Springer, Netherlands, Dordrecht, pp 187–224

    Google Scholar 

  123. Garcia X et al (2020) Ceria-based catalysts studied by near ambient pressure x-ray photoelectron spectroscopy: a review. Catalysts 10(3):286

    CAS  Google Scholar 

  124. J. Kullgren (2012) Oxygen Vacancy Chemistry in Ceria, Uppsala University.

  125. Pérez-Coll D, Núñez P, Frade JR (2011) Reducibility of ceria-based materials exposed to fuels and under fuel/air gradients. In: Sikalidis C (ed) Advances in Ceramics. Rijeka, IntechOpen

    Google Scholar 

  126. Filtschew A, Hofmann K, Hess C (2016) Ceria and its defect structure: new insights from a combined spectroscopic approach. J Phys Chem C 120(12):6694–6703

    CAS  Google Scholar 

  127. Costa Oliveira FA et al (2020) High performance cork-templated ceria for solar thermochemical hydrogen productionviatwo-step water-splitting cycles. Sustain Energy Fuels 4(6):3077–3089

    CAS  Google Scholar 

  128. Hamm CM, Alff L, Albert B (2014) Synthesis of microcrystalline Ce2O3 and formation of solid solutions between cerium and lanthanum oxides. Z Anorg und Allg Chem 640(6):1050–1053

    CAS  Google Scholar 

  129. Matz O, Calatayud M (2019) H2 dissociation and oxygen vacancy formation on Ce2O3 surfaces. Top Catal 62(12):956–967

    CAS  Google Scholar 

  130. Fronzi M, Soon A, Delley B, Traversa E, Stampfl C (2009) Stability and morphology of cerium oxide surfaces in an oxidizing environment: a first-principles investigation. J Chem Phys 131(10):104701

    Google Scholar 

  131. J. Rogal (2006) Stability, composition and function of palladium surfaces in oxidizing environments: a first-principles statistical mechanics approach, Freie Universität Berlin.

  132. Ye X et al (2019) Insight of the stability and activity of platinum single atoms on ceria. Nano Res 12(6):1401–1409

    CAS  Google Scholar 

  133. Sohlberg K, Pantelides ST, Pennycook SJ (2001) Interactions of hydrogen with CeO2. J Am Chem Soc 123(27):6609–6611

    CAS  PubMed  Google Scholar 

  134. Vicario G, Balducci G, Fabris S, De Gironcoli S, Baroni S (2006) Interaction of hydrogen with cerium oxide surfaces: a quantum mechanical computational study. J Phys Chem B 110(39):19380–19385

    CAS  PubMed  Google Scholar 

  135. Otero GS, Lustemberg PG, Prado F, Ganduglia-Pirovano MV (2020) Relative stability of near-surface oxygen vacancies at the CeO2(111) surface upon zirconium doping. J Phys Chem C 124(1):625–638

    CAS  Google Scholar 

  136. Zhou G, Shah PR, Montini T, Fornasiero P, Gorte RJ (2007) Oxidation enthalpies for reduction of ceria surfaces. Surf Sci 601(12):2512–2519

    CAS  Google Scholar 

  137. Al-Madfa HA, Khader MM, Morris MA (2004) Reduction kinetics of ceria surface by hydrogen. Int J Chem Kinet 36(5):293–301

    CAS  Google Scholar 

  138. Botu V, Ramprasad R, Mhadeshwar AB (2014) Ceria in an oxygen environment: surface phase equilibria and its descriptors. Surf Sci 619:49–58

    CAS  Google Scholar 

  139. Warren KJ, Scheffe JR (2018) Kinetic insights into the reduction of ceria facilitated via the partial oxidation of methane. Mater Today Energy 9:39–48

    Google Scholar 

  140. Carrasco J, Vilé G, Fernández-Torre D, Pérez R, Pérez-Ramírez J, Ganduglia-Pirovano MV (2014) Molecular-level understanding of CeO2 as a catalyst for partial alkyne hydrogenation. J Phys Chem C 118(10):5352–5360

    CAS  Google Scholar 

  141. Zhu HZ, Lu YM, Fan FJ, Yu SH (2013) Selective hydrogenation of nitroaromatics by ceria nanorods. Nanoscale 5(16):7219–7223

    CAS  PubMed  Google Scholar 

  142. Chang K, Zhang H, Cheng M, Lu (2020) Application of ceria in CO2 conversion catalysis. ACS Catal 10(1):613–631

    CAS  Google Scholar 

  143. Guo DJ, Jing ZH (2010) A novel co-precipitation method for preparation of Pt-CeO2 composites on multi-walled carbon nanotubes for direct methanol fuel cells. J Power Sources 195(12):3802–3805

    CAS  Google Scholar 

  144. Qi G, Yang RT, Chang R (2004) MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures. Appl Catal B 51(2):93–106

    CAS  Google Scholar 

  145. Deraz NM (2018) Comparative jurisprudence of catalysts preparation methods: I. precipitation and impregnation methods. J Ind Environ Chem 2(1):19–22

    Google Scholar 

  146. Slavinskaya EM et al (2015) Low-temperature CO oxidation by Pd/CeO2 catalysts synthesized using the coprecipitation method. Appl Catal B 166–167:91–103

    Google Scholar 

  147. Grzybek G et al (2016) Strong dispersion effect of cobalt spinel active phase spread over ceria for catalytic N2O decomposition: the role of the interface periphery. Appl Catal B 180:622–629

    CAS  Google Scholar 

  148. Yao D, Yang H, Chen H, Williams PT (2018) Co-precipitation, impregnation and so-gel preparation of Ni catalysts for pyrolysis-catalytic steam reforming of waste plastics. Appl Catal B 239:565–577

    CAS  Google Scholar 

  149. Dow W-P, Wang Y-P, Huang T-J (2000) TPR and XRD studies of yttria-doped ceria/γ-alumina-supported copper oxide catalyst. Appl Catal A 190(1):25–34

    CAS  Google Scholar 

  150. Chary KVR, Rao PVR, Vishwanathan V (2006) Synthesis and high performance of ceria supported nickel catalysts for hydrodechlorination reaction. Catal Commun 7(12):974–978

    CAS  Google Scholar 

  151. Lee JC, Trimm DL, Kohler MA, Wainwright MS, Cant NW (1988) Investigation of copper on silica catalysts prepared by an ion exchange method. Catal Today 2(5):643–652

    CAS  Google Scholar 

  152. Bond GC, Thompson DT (1999) Catalysis by gold. Catal Rev 41(3–4):319–388

    CAS  Google Scholar 

  153. Takahashi K, Takezawa N, Kobayashi H (1982) The mechanism of steam reforming of methanol over a copper-silica catalyst. Appl Catal 2(6):363–366

    CAS  Google Scholar 

  154. Gamboa-Rosales NK, Ayastuy JL, González-Marcos MP, Gutiérrez-Ortiz MA (2012) Oxygen-enhanced water gas shift over ceria-supported Au–Cu bimetallic catalysts prepared by wet impregnation and deposition–precipitation. Int J Hydrogen Energy 37(8):7005–7016

    CAS  Google Scholar 

  155. del Río E et al (2011) CO oxidation activity of a au/ceria-zirconia catalyst prepared by deposition–precipitation with urea. Top Catal 54(13):931

    Google Scholar 

  156. Deraz NM (2018) The comparative jurisprudence of catalysts preparation methods: II. Deposition-precipitation and adsorption methods. J Indust Environ Chem 2(2):2–4

    Google Scholar 

  157. Zhang Y, Xiong G, Yao N, Yang W, Fu X (2001) Preparation of titania-based catalysts for formaldehyde photocatalytic oxidation from TiCl4 by the sol–gel method. Catal Today 68(1):89–95

    CAS  Google Scholar 

  158. Ward DA, Ko EI (1995) Preparing catalytic materials by the sol-gel method. Ind Eng Chem Res 34(2):421–433

    CAS  Google Scholar 

  159. Thammachart M, Meeyoo V, Risksomboon T, Osuwan S (2001) Catalytic activity of CeO2-ZrO2 mixed oxide catalysts prepared via sol-gel technique: CO oxidation. Catal Today 68(1–3):53–61

    CAS  Google Scholar 

  160. Vilé G et al (2015) Promoted ceria catalysts for alkyne semi-hydrogenation. J Catal 324:69–78

    Google Scholar 

  161. Vilé G, Colussi S, Krumeich F, Trovarelli A, Pérez-Ramírez J (2014) Opposite face sensitivity of CeO2 in hydrogenation and oxidation catalysis. Angew Chemie -Int Ed 53(45):12069–12072

    Google Scholar 

  162. Tu C, Cheng S (2014) Ceria-modified palladium/activated carbon as a high-performance catalyst for crude caprolactam hydrogenation purification. ACS Sustain Chem Eng 2(4):629–636

    CAS  Google Scholar 

  163. Dorner RW, Hardy DR, Williams FW, Willauer HD (2010) Effects of ceria-doping on a CO2 hydrogenation iron-manganese catalyst. Catal Commun 11(9):816–819

    CAS  Google Scholar 

  164. Serrano-Ruiz JC, Ramos-Fernández EV, Silvestre-Albero J, Sepúlveda-Escribano A, Rodríguez-Reinoso F (2008) Preparation and characterization of CeO2 highly dispersed on activated carbon. Mater Res Bull 43(7):1850–1857

    CAS  Google Scholar 

  165. Lin L et al (2018) In situ characterization of Cu/CeO2 nanocatalysts for CO2 hydrogenation: morphological effects of nanostructured ceria on the catalytic activity. J Phys Chem C 122(24):12934–12943

    CAS  Google Scholar 

  166. Konsolakis M et al (2019) Co2 hydrogenation over nanoceria-supported transition metal catalysts: role of ceria morphology (nanorods versus nanocubes) and active phase nature (co versus cu). Nanomaterials 9(12):1739

    CAS  PubMed Central  Google Scholar 

  167. Winter LR, Gomez E, Yan B, Yao S, Chen JG (2018) Tuning Ni-catalyzed CO2 hydrogenation selectivity via Ni-ceria support interactions and Ni-Fe bimetallic formation. Appl Catal B 224(2017):442–450

    CAS  Google Scholar 

  168. Li S et al (2017) Tuning the selectivity of catalytic carbon dioxide hydrogenation over iridium/cerium oxide catalysts with·a strong metal–support interaction. Angew Chemie -Int Ed 56(36):10761–10765

    CAS  Google Scholar 

  169. Wang W, Qu Z, Song L, Fu Q (2020) CO2 hydrogenation to methanol over Cu/CeO2 and Cu/ZrO2 catalysts: tuning methanol selectivity via metal-support interaction. J Energy Chem 40:22–30

    CAS  Google Scholar 

  170. Ouyang B, Tan W, Liu B (2017) Morphology effect of nanostructure ceria on the Cu/CeO2 catalysts for synthesis of methanol from CO2 hydrogenation. Catal Commun 95:36–39

    CAS  Google Scholar 

  171. Akbayrak S (2018) Rhodium(0) nanoparticles supported on ceria as catalysts in hydrogenation of neat benzene at room temperature. J Colloid Interface Sci 530:459–464

    CAS  PubMed  Google Scholar 

  172. Nelson NC, Manzano JS, Sadow AD, Overbury SH, Slowing II (2015) Selective hydrogenation of phenol catalyzed by palladium on high-surface-area ceria at room temperature and ambient pressure. ACS Catal 5(4):2051–2061

    CAS  Google Scholar 

  173. Velu S, Kapoor MP, Inagaki S, Suzuki K (2003) Vapor phase hydrogenation of phenol over palladium supported on mesoporous CeO2 and ZrO2. Appl Catal A 245(2):317–331

    CAS  Google Scholar 

  174. He D, Shi H, Wu Y, Xu B-Q (2007) Synthesis of chloroanilines: selective hydrogenation of the nitro in chloronitrobenzenes over zirconia-supported gold catalyst. Green Chem 9(8):849–851

    CAS  Google Scholar 

  175. Hugon A, Delannoy L, Louis C (2008) Supported gold catalysts for selective hydrogenation of 1,3-butadiene in the presence of an excess of alkenes. Gold Bull 41(2):127–138

    CAS  Google Scholar 

  176. Shimizu K, Miyamoto Y, Kawasaki T, Tanji T, Tai Y, Satsuma A (2009) Chemoselective hydrogenation of nitroaromatics by supported gold catalysts: mechanistic reasons of size- and support-dependent activity and selectivity. J Phys Chem C 113(41):17803–17810

    CAS  Google Scholar 

  177. Yang K, Liu C (2015) Hydrogenation of isoprene over gold supported on CeO2, ZrO2, SiO2 and N-SiO2. J Ind Eng Chem 28:161–170

    Google Scholar 

  178. Azizi Y, Petit C, Pitchon V (2008) Formation of polymer-grade ethylene by selective hydrogenation of acetylene over Au/CeO2 catalyst. J Catal 256(2):338–344

    CAS  Google Scholar 

  179. Zhu L et al (2012) A comparative study on Pt/CeO2 and Pt/ZrO2 catalysts for crotonaldehyde hydrogenation. J Mol Catal A 361–362(3):52–57

    Google Scholar 

  180. Rao PVR, Kumar VP, Rao GS, Chary KVR (2012) Vapor phase selective hydrogenation of acetone to methyl isobutyl ketone (MIBK) over Ni/CeO 2 catalysts. Catal Sci Technol 2(8):1665–1673

    CAS  Google Scholar 

  181. Serrano-Ruiz JC, Sepúlveda-Escribano A, Rodríguez-Reinoso F, Duprez D (2007) Pt-Sn catalysts supported on highly-dispersed ceria on carbon. Application to citral hydrogenation. J Mol Catal A 268(1–2):227–234

    CAS  Google Scholar 

  182. Campo BC, Ivanova S, Gigola C, Petit C, Volpe MA (2008) Crotonaldehyde hydrogenation on supported gold catalysts. Catal Today 133–135(1–4):661–666

    Google Scholar 

  183. Campo B, Petit C, Volpe MA (2008) Hydrogenation of crotonaldehyde on different Au/CeO2catalysts. J Catal 254(1):71–78

    CAS  Google Scholar 

  184. Reddy BM, Khan A (2005) Recent advances on TiO2-ZrO2 mixed oxides as catalysts and catalyst supports. Catal Rev Sci Eng 47(2):257–296

    CAS  Google Scholar 

  185. Matralis HK, Ciardelli M, Ruwet M, Grange P (1995) Vanadia catalysts supported on mixed TiO2-Al2O3 supports: effect of composition on the structure and acidity. J Catal 157(2):368–379

    CAS  Google Scholar 

  186. Tiwari R, Rana BS, Kumar R, Sinha AK (2012) TiO2-ZrO2 binary oxides for effective hydrodesulfurization catalysts. Open Catal J 5(1):39–48

    CAS  Google Scholar 

  187. Maity SK, Rana MS, Bej SK, Ancheyta-Juarez J, MuraliDhar G, PrasadaRao TSR (2001) TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst. Catal Lett 72(1–2):115–119

    CAS  Google Scholar 

  188. Franchini CA, Aranzaez W, Duarte de Farias AM, Pecchi G, Fraga MA (2014) Ce-substituted LaNiO3 mixed oxides as catalyst precursors for glycerol steam reforming. Appl Catal B 147:193–202

    CAS  Google Scholar 

  189. Haneda M et al (2008) Catalytic performance of rhodium supported on ceria–zirconia mixed oxides for reduction of NO by propene. J Catal 259(2):223–231

    CAS  Google Scholar 

  190. Ilieva L, Pantaleo G, Sobczak JW, Ivanov I, Venezia AM, Andreeva D (2007) NO reduction by CO in the presence of water over gold supported catalysts on CeO2-Al2O3 mixed support, prepared by mechanochemical activation. Appl Catal B 76(1):107–114

    CAS  Google Scholar 

  191. Topka P, Delaigle R, Kaluža L, Gaigneaux EM (2015) Performance of platinum and gold catalysts supported on ceria–zirconia mixed oxide in the oxidation of chlorobenzene. Catal Today 253:172–177

    CAS  Google Scholar 

  192. Concepción P, Corma A, Silvestre-Albero J, Franco V, Chane-Ching JY (2004) Chemoselective hydrogenation catalysts: Pt on mesostructured CeO2 nanoparticles embedded within ultrathin layers of SiO2 binder. J Am Chem Soc 126(17):5523–5532

    PubMed  Google Scholar 

  193. Rynkowski J, Farbotko J, Touroude R, Hilaire L (2000) Redox behaviour of ceria-titania mixed oxides. Appl Catal A 203(2):335–348

    CAS  Google Scholar 

  194. Bhogeswararao S, Srinivas D (2012) Intramolecular selective hydrogenation of cinnamaldehyde over CeO2-ZrO2-supported Pt catalysts. J Catal 285(1):31–40

    CAS  Google Scholar 

  195. Jaf ZN, Altarawneh M, Miran HA, Almatarneh MH, Jiang ZT, Dlugogorski BZ (2018) Catalytic hydrogenation of p-chloronitrobenzene to p-chloroaniline mediated by γ-Mo2N. ACS Omega 3(10):14380–14391

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Jaf ZN, Altarawneh M, Miran HA, Jiang ZT, Dlugogorski BZ (2017) Mechanisms governing selective hydrogenation of acetylene over γ-Mo2N surfaces. Catal Sci Technol 7(4):943–960

    CAS  Google Scholar 

  197. Reimers W, Zubieta C, Baltanás MA, Branda MM (2018) A DFT approach for methanol synthesis via hydrogenation of CO on gallia, ceria and ZnO surfaces. Appl Surf Sci 436:1003–1017

    CAS  Google Scholar 

  198. Miran HA, Altarawneh M, Jiang ZT, Oskierski H, Almatarneh M, Dlugogorski BZ (2017) Decomposition of selected chlorinated volatile organic compounds by ceria (CeO2). Catal Sci Technol 7(17):3902–3919

    CAS  Google Scholar 

  199. Pinto FM, Suzuki VY, Silva RC, La Porta FA (2019) Oxygen defects and surface chemistry of reducible oxides. Front Mater 6:260

    Google Scholar 

  200. Schaube M, Merkle R, Maier J (2019) Oxygen exchange kinetics on systematically doped ceria: a pulsed isotope exchange study. J Mater Chem A 7(38):21854–21866

    CAS  Google Scholar 

  201. Lapinas AT, Klein MT, Gates BC, Macris A, Lyons JE (1991) Catalytic hydrogenation and hydrocracking of fluorene: reaction pathways, kinetics, and mechanisms. Ind Eng Chem Res 30(1):42–50

    CAS  Google Scholar 

  202. Zhang S et al (2017) Solid frustrated-Lewis-pair catalysts constructed by regulations on surface defects of porous nanorods of CeO2. Nat Commun 8(1):15266

    CAS  PubMed  PubMed Central  Google Scholar 

  203. X. Li, J. Paier, and J. Sauer (2019) Stability of hydride anions in reduced ceria studied by density functional theory, Humboldt-Universität zu Berlin.

  204. Cheng Z, Lo CS (2016) Mechanistic and microkinetic analysis of CO2 hydrogenation on ceria”. Phys Chem Chem Phys 18(11):7987–7996

    CAS  PubMed  Google Scholar 

  205. Werner K et al (2017) Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H2 interaction with CeO2(111). J Am Chem Soc 139(48):17608–17616

    CAS  PubMed  Google Scholar 

  206. Zhou S, Gao L, Wei F, Lin S, Guo H (2019) On the mechanism of alkyne hydrogenation catalyzed by Ga-doped ceria. J Catal 375:410–418

    CAS  Google Scholar 

  207. Riley C et al (2018) Design of effective catalysts for selective alkyne hydrogenation by doping of ceria with a single-atom promotor. J Am Chem Soc 140(40):12964–12973

    CAS  PubMed  Google Scholar 

  208. Feng Y, Zhou L, Wan Q, Lin S, Guo H (2018) Selective hydrogenation of 1,3-butadiene catalyzed by a single Pd atom anchored on graphene: the importance of dynamics. Chem Sci 9(27):5890–5896

    CAS  PubMed  PubMed Central  Google Scholar 

  209. Antonetti C, Oubenali M, Raspolli Galletti AM, Serp P, Vannucci G (2012) Novel microwave synthesis of ruthenium nanoparticles supported on carbon nanotubes active in the selective hydrogenation of p-chloronitrobenzene to p-chloroaniline. Appl Catal A 421–422:99–107

    Google Scholar 

  210. Wang Y, Yao J, Li H, Su D, Antonietti M (2011) Highly selective hydrogenation of phenol and derivatives over a pd@carbon nitride catalyst in aqueous media. J Am Chem Soc 133(8):2362–2365

    CAS  PubMed  Google Scholar 

  211. Fujita S, Yamada T, Akiyama Y, Cheng H, Zhao F, Arai M (2010) Hydrogenation of phenol with supported Rh catalysts in the presence of compressed CO2: its effects on reaction rate, product selectivity and catalyst life. J Supercrit Fluids 54(2):190–201

    CAS  Google Scholar 

  212. Liu H, Jiang T, Han B, Liang S, Zhou Y (2009) selective phenol hydrogenation to cyclohexanone over a dual supported Pd-lewis acid catalyst. Science (80-) 326(5957):1250–1252

    CAS  Google Scholar 

  213. Shi X, Wang X, Shang X, Zou X, Ding W, Lu X (2017) High performance and active sites of a ceria-supported palladium catalyst for solvent-free chemoselective hydrogenation of nitroarenes. ChemCatChem 9(19):3743–3751

    CAS  Google Scholar 

  214. Garcia-Melchor M, Bellarosa L, López N (2014) Unique reaction path in heterogeneous catalysis: the concerted semi-hydrogenation of propyne to propene on CeO2. ACS Catal 4(11):4015–4020. https://doi.org/10.1021/cs5011508

    Article  CAS  Google Scholar 

  215. Garcia-Melchor M, Bellarosa L, López N (2015) Unique reaction path in heterogeneous catalysis: the concerted semi-hydrogenation of propyne to propene on CeO2. ACS Catal 5(3):1525

    CAS  Google Scholar 

  216. Nehlsen JP, Benziger JB, Kevrekidis IG (2004) A process for the removal of thiols from a hydrocarbon stream by a heterogeneous reaction with lead oxide. Energy Fuels 18(3):721–726

    CAS  Google Scholar 

  217. Wu L et al (2014) A combined experimental/computational study on the adsorption of organosulfur compounds over metal-organic frameworks from fuels. Langmuir 30(4):1080–1088

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Kourosh Razmgar thanks Murdoch University for the award of a postgraduate scholarship. Mohammednoor Altarawneh acknowledges a start-up grant from the College of Engineering at the United Arab Emirates University, UAEU (Grant Number: 31N421).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammednoor Altarawneh or Ibukun Oluwoye.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razmgar, K., Altarawneh, M., Oluwoye, I. et al. Ceria-Based Catalysts for Selective Hydrogenation Reactions: A Critical Review. Catal Surv Asia 25, 27–47 (2021). https://doi.org/10.1007/s10563-020-09319-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09319-z

Keywords

Navigation